Меню

Виды измерения величин физика



Измерение (физика)

Измерение — совокупность операций для определения отношения одной (измеряемой) величины к другой однородной величине, принятой за единицу, хранящуюся в техническом средстве (средстве измерений). Получившееся значение называется числовым значением измеряемой величины, числовое значение совместно с обозначением используемой единицы называется значением физической величины. Измерение физической величины опытным путём проводится с помощью различных средств измерений — мер, измерительных приборов, измерительных преобразователей, систем, установок и т. д. Измерение физической величины включает в себя несколько этапов: 1) сравнение измеряемой величины с единицей; 2) преобразование в форму, удобную для использования (различные способы индикации).

  • Принцип измерений — физическое явление или эффект, положенное в основу измерений.
  • Метод измерений — приём или совокупность приёмов сравнения измеряемой физической величины с её единицей в соответствии с реализованным принципом измерений. Метод измерений обычно обусловлен устройством средств измерений.

Характеристикой точности измерения является его погрешность Примеры измерений

  1. В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути сравнивают её размер с единицей, хранимой линейкой, и, произведя отсчёт, получают значение величины (длины, высоты, толщины и других параметров детали).
  2. С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчёт.

В тех случаях, когда невозможно выполнить измерение (не выделена величина как физическая и не определена единица измерений этой величины) практикуется оценивание таких величин по условным шкалам, например, Шкала Рихтера интенсивности землетрясений, Шкала Мооса — шкала твёрдости минералов

Наука, предметом изучения которой являются все аспекты измерений, называется метрологией.

Источник

Виды измерения величин физика

Измерение физической величины (англ. measurement) – совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины.
Примеры:

  • В простейшем случае, прикладывая линейку с делениями к какой-либо детали, по сути сравнивают ее размер с единицей, хранимой линейкой, и, произведя отсчет, получают значение величины (длины, высоты, толщины и других параметров детали).
  • С помощью измерительного прибора сравнивают размер величины, преобразованной в перемещение указателя, с единицей, хранимой шкалой этого прибора, и проводят отсчет.

Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.

Неравноточные измерения – ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.

Однократное измерение – измерение, выполненное один раз. Примечание. Во многих случаях на практике выполняются именно однократные измерения. Например, измерение конкретного момента времени по часам обычно производится один раз.

Многократное измерение – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т.е. состоящее из ряда однократных измерений.

Статическое измерение (англ. static measurement) – измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения.
Примеры

  • Измерение длины детали при нормальной температуре.
  • Измерение размеров земельного участка

Динамическое измерение (англ. dynamic measurement) – измерение изменяющейся по размеру физической величины.

Абсолютное измерение – измерение, основанное на прямых измерениях одной или нескольких основных величин и (или) использовании значений физических констант. Пример. Измерение силы F=mg основано на измерении основной величины — массы m и использовании физической постоянной g (в точке измерения массы). Примечание. Понятие абсолютное измерение применяется как противоположное понятию относительное измерение и рассматривается как измерение величины в ее единицах. В таком понимании это понятие находит все большее и большее применение.

Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы, или измерение изменения величины по отношению к одноименной величине, принимаемой за исходную.

Прямое измерение – измерение, при котором искомое значение физической величины получают непосредственно. Примечание. Термин прямое измерение возник как противоположный термину косвенное измерение. Строго говоря, измерение всегда прямое и рассматривается как сравнение величины с ее единицей. В этом случае лучше применять термин прямой метод измерений.
Примеры

  • Измерение длины детали микрометром.
  • Измерение силы тока амперметром.
  • Измерение массы на весах.

Косвенное измерение – определение искомого значения физической величины на основании результатов прямых измерений других физических величин, функционально связанных с искомой величиной. Примечание. Во многих случаях вместо термина косвенное измерение применяют термин косвенный метод измерений.

Совокупные измерения – проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях. Примечание. Для определения значений искомых величин число уравнений должно быть не меньше числа величин.

Совместные измерения – проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними.

Наблюдение при измерении (англ. observation) – операции, проводимые при измерении и имеющие целью своевременно и правильно произвести отсчет.

Отсчет показаний средства измерений – фиксация значения величины или числа по показывающему устройству средства измерений в заданный момент времени.

Измерительный сигнал (англ. measurement signal) – сигнал, содержащий количественную информацию об измеряемой физической величине.

Измерительная информация (англ. measurement information) – информация о значениях физических величин.

Измерительная задача – задача, заключающаяся в определении значения физической величины путем ее измерения с требуемой точностью в данных условиях измерений.

Объект измерения – тело (физическая система, процесс, явление и т.д.), которое характеризуется одной или несколькими измеряемыми физическими величинами.

Область измерений – совокупность измерений физических величин, свойственных какой-либо области науки или техники и выделяющихся своей спецификой.

Вид измерений – часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.

Подвид измерений – часть вида измерений, выделяющаяся особенностями измерений однородной величины (по диапазону, по размеру величины и др.).

Источник

Измерение физических величин. Классификация видов измерений.

Измерение физических величин. Классификация видов измерений.

Физическая величинаодно из свойств физического объекта, общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.

Истинное значение физической величинызначение физической величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину. Действительное значение физической величинызначение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

Измерение — совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей и получения значения этой величины.Качество измерений оценивается по:

2) Точности (близость результатов измерения к истинному значению величины)

Читайте также:  Скорость изменения давления измерить

3) Правильности (близость к нулю систематических погрешностей)

4) Сходимости (в разных условиях один и тот же результат)

5) Воспроизводимости ( в 1 и той же лаборатории один и тот же результат)

Классификация измерений:

По признаку точности — равноточные и неравноточные измерения.

По числу измерений — однократные и многократные измерения.

По характеру изменения измеряемой величины — статические и динамические

По цели измерения — технические и метрологические измерения.

По используемым размерам единиц — абсолютные и относительные измерения.

По способу получения результата измерений — совокупные, совместные, косвенные и прямые измерения.

7. Методы измерений по областям измерений:Измерения геометрические, механические, давления и т.д.

Международная система единиц

Наличие ряда систем единиц физических величин, а также значительного числа внесистемных единиц, неудобства, связанные с пересчетом при переходе от одной системы единиц к другой, требовали унификации единиц измерений. Рост научно-технических и экономических связей между разными странами обусловливал необходимость такой унификации в международном масштабе. Требовалась единая система единиц физических величин, практически удобная и охватывающая различные области измерений.

Система СИ была принята в 1960г XI Генеральной конференцией по мерам и весам, некоторые последующие конференции внесли в СИ ряд изменений.

Система СИ определяет семь основных и производные единицы измерения, а также набор приставок. Установлены стандартные сокращённые обозначения для единиц измерения и правила записи производных единиц.

В России действует ГОСТ 8.417-2002, предписывающий обязательное использование системы СИ. В нем перечислены единицы измерения, приведены их русские и международные названия и установлены правила их применения. По этим правилам в международных документах и на шкалах приборов допускается использовать только международные обозначения. Во внутренних документах и публикациях можно использовать либо международные либо русские обозначения (но не те и другие одновременно).

Основные единицы системы СИ: килограмм, метр, секунда, ампер, кельвин, моль и кандела. К примеру, метр равен длине пути, проходимого светом в вакууме за 1/299792458 долю секунды и т.д. В рамках системы СИ считается, что эти единицы имеют независимую размерность, т. е. ни одна из основных единиц не может быть получена из других.

Производные единицы получаются из основных с помощью алгебраических действий, таких как умножение и деление. Некоторым из производных единиц в Системе СИ присвоены собственные названия.

Приставки можно использовать перед названиями единиц измерения; они означают, что единицу измерения нужно умножить или разделить на определенное целое число, степень числа 10. Например приставка «кило» означает умножение на 1000 (километр = 1000 метров). Приставки СИ называют также десятичными приставками.

В настоящее время система СИ принята в качестве законной системы единиц измерения большинством стран мира и почти всегда используется в области науки (даже в тех странах, которые не приняли СИ).

Погрешности измерений.

Погрешность — отклонение результата измерения от истинного (действительного) значения измеряемой величины.

По форме представления:

· Абсолютная погрешность измерения— погрешность, выраженная в единицах измеряемой величины. Это разность между показанием измерительного прибора и действительным значением измеряемой величины:

· Относительная погрешность измерения — погрешность измерения, выраженная отношением абсолютной погрешности измерения к действительному или измеренному значению измеряемой величины:

Она более информативна! Выражается в процентах или долях.

· Приведенная погрешность измерения –это погрешность, выраженная отношением абсолютной погрешности средства измерений к условно принятому значению величины, постоянному во всем диапазоне измерений или в части диапазона:

где Xn — нормирующее значение, которое зависит от типа шкалы измерительного прибора и определяется по его градуировке:

(если шкала прибора односторонняя, то есть нижний предел измерений равен нулю, то Xn определяется равным верхнему пределу измерений; если шкала прибора двухсторонняя, то нормирующее значение равно ширине диапазона измерений прибора.)

Выражается в процентах или долях.

По причине возникновения:

По характеру проявления:

· Грубая погрешность (промах)

А так же погрешности бывают:

Класс точности средств измерений — обобщенная характеристика средств измерений, определяемые пределами допускаемых основной и дополнительной погрешностей, а также другими свойствами средств измерений, влияющими на их точность, значения которых устанавливаются в стандартах на отдельные виды средств измерений. Классы точности присваиваются средствам измерений при их разработке с учетом результатов государственных приемочных испытаний.

5. Методы и средства измерения температуры..

Термометрическое свойство Наименование средства измерения Диапазон измерений в *С
Основаны на изменении объема газа, жидкости и твердых тел в зависимости от температуры Термометры расширения: Жидкостные Дилатометрические Биметаллические Манометрические (основаны на изм. давления газа/пара или жидкости в замкнутой системе при изм.темп) -250..750 -150…700 -150…700 -120…600
Термоэлектрический эффект (основаны на изм. термоЭДС при нагревании спая разнородных проводников) Термоэлектрические термометры («в замкнутой цепи, состоящей из 2х и более разнородных проводников возникает эл.ток, если места соединения нагреты до различной температуры»Остается только измерить этот ток) -100…1800
Использование зависимости электрического сопротивления чувствительного элемента от температуры Термометры сопротивления -100…650
Тепловое излучение Пирометры частичного излучения (основаны на изм.яркости свечения тел при изм.темп.) Пирометры радиационные (основаны на изм. суммарной энергии излучаемой нагретым телом при изм.темп.) Цветовые пирометры (основаны на изм. цвета нагретого тела при изм.температуры) 700-6000 20-2000 1400-2800

Приборы для измерения температуры условно классифицируются по диапазону измерений: термометры

Классифицируются на контактные и бесконтактные приборы

Измерение физических величин. Классификация видов измерений.

Физическая величинаодно из свойств физического объекта, общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них.

Истинное значение физической величинызначение физической величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину. Действительное значение физической величинызначение физической величины, полученное экспериментальным путем и настолько близкое к истинному значению, что в поставленной измерительной задаче может быть использовано вместо него.

Измерение — совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей и получения значения этой величины.Качество измерений оценивается по:

2) Точности (близость результатов измерения к истинному значению величины)

3) Правильности (близость к нулю систематических погрешностей)

4) Сходимости (в разных условиях один и тот же результат)

5) Воспроизводимости ( в 1 и той же лаборатории один и тот же результат)

Классификация измерений:

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Читайте также:  Как измерить амперметры мультиметром

Источник

Метрология, стандартизация и сертификация

Лекция 1. Метрология

1. Метрология и ее значение в научно-техническом прогрессе.

2. Физические величины и единицы их измерений. Физические величины. Понятие о системе физических величин.

3.Принципы построения Международной системы единиц.

4. Преимущества Международной системы единиц

1. Метрология и ее значение в научно-техническом прогрессе

Измерения являются одним из важнейших путей познания природы, дают количественную характеристику окружающего нас мира, помогают раскрыть действующие в природе закономерности. Они дают возможность обеспечить взаимозаменяемость узлов и деталей, совершенствовать технологию, безопасность труда и других видов человеческой деятельности, улучшать качество продукции.

Круг величин, подлежащих измерению, определяется разнообразием явлений, с которыми приходится сталкиваться человеку. Сравнение опытным путем измеряемой величины с другой, подобной ей и принятой за единицу, составляет общую основу любых измерений.

Метрология — наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.

В метрологии решаются следующие основные задачи:

  • разработка общей теории измерений физических величин и их систем;
  • разработка методов и средств измерений;
  • разработка методов определения точности измерения;
  • разработка основ обеспечения единства и единообразия средств измерений;
  • разработка эталонов и образцовых средств измерений;
  • разработка методов передачи размеров единиц от эталонов и образцовых средств измерений к рабочим средствам измерений.

Источник

Лекция 2. Виды и методы измерений

Сайт: MOODLE КНИТУ (КХТИ) Казанский Национальный Исследовательский Технологический Университет Дистанционное Образование.
Курс: Метрология, стандартизация и сертификация
Книга: Лекция 2. Виды и методы измерений
Напечатано:: Гость
Дата: Суббота, 27 Март 2021, 11:38

Описание

1. Основные понятия и определения. Виды измерений.

2. Методы измерений.

3. Понятие о точности измерений.

4. Основы обеспечения единства измерений

Оглавление

1. Основные понятия и определения. Виды измерений

Измерение — совокупность операций по применению системы измерений для получения значения измеряемой физической величины.

Измерения могут быть классифицированы по метрологическому назначению на три категории:

Ненормированные – измерения при ненормированных метрологических характеристиках.

Технические – измерения при помощи рабочих средств измерений.

Метрологические – измерения при помощи эталонов и образцовых средств измерений.

Ненормированные измерения наиболее простые. В них не нормируются точность и достоверность результата. Поэтому область их применения ограничена. Они не могут быть применены в области, на которую распространяется требование единства измерений. Каждый из нас выполнял ненормированные измерения длины, массы, времени, температуры не задумываясь о точности и достоверности результата. Как правило, результаты ненормированных измерений применяются индивидуально, т.е. используются субъектом в собственных целях.

Технические измерения удовлетворяют требованиям единства измерений, т.е. результат бывает получен с известной погрешностью и вероятностью, записывается в установленных единицах физических величин, с определённым количеством значащих цифр. Выполняются при помощи средств измерений с назначенным классом точности, прошедших поверку или калибровку в метрологической службе. В зависимости от того, предназначены измерения для внутрипроизводственных целей или их результаты будут доступны для всеобщего применения, необходимо выполнение калибровки или поверки средств измерений. Средство измерений, прошедшее калибровку или поверку, называют рабочим средством измерений. Примером технических измерений является большинство производственных измерений, измерение квартирными счётчиками потреблённой электроэнергии, измерения при взвешивании в торговых центрах, финансовые измерения в банковских терминалах. Средство измерений, применяемое для калибровки других средств измерений, называют образцовым средством измерений. Образцовое средство измерений имеет повышенный класс точности и хранится отдельно, для технических измерений не применяется.

Метрологические измерения не просто удовлетворяют требованиям единства измерений, а являются одним из средств обеспечения единства измерений. Выполняются с целью воспроизведения единиц физических величин для передачи их размера образцовым и рабочим средствам измерений. Метрологические измерения выполняет метрологическая служба в стандартных условиях, сертифицированным персоналом.

В дисциплине «Метрология, стандартизация и сертификация» рассматриваются технические измерения.

Можно выделить следующие виды измерений.

1) По характеру зависимости измеряемой величины от времени методы измерений подразделяются на:

  • статические, при которых измеряемая величина остается постоянной во времени;
  • динамические, в процессе которых измеряемая величина изменяется и является непостоянной во времени.

2) По способу получения результатов измерений (виду уравнений измерений) методы измерений разделяют на прямые, косвенные, совокупные и совместные.

При прямом измерении искомое значение величины находят непо­средственно из опытных данных (например, измерение диаметра штан­генциркулем).

При косвенном измерении искомое значение величины определяют на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям.

Совместными называют измерения двух или нескольких не одноимённых величин, производимые одновременно с целью нахождения функциональной зависимости между величинами (например, зависимости длины тела от температуры).

Совокупные – это такие измерения, в которых значения измеряемых величин находят по данным повторных измерений одной или нескольких одноименных величин (при различных сочетаниях мер или этих величин) путем решения системы уравнений.

3) По условиям, определяющим точность результата измерения, мето­ды делятся на три класса.

Измерении максимально возможной точности (например, эталонные измерения), достижимой при существующем уровне техники.

Контрольно-поверочные измерения, погрешность которых с определенной вероятностью не должна превышать некоторое заданное значение.

Технические измерения, в которых погрешность результата определяется характеристиками средств измерения.

4) По способу выражения результатов измерений различают абсолютные и относительные измерения.

Абсолютное измерение основано на прямых измерениях величины и (или) использования значений физических констант.

При относительных измерениях величину сравнивают с одноименной, играющей роль единицы или принятой за исходную (например, измерение диаметра вращающейся детали по числу оборотов соприкасающегося с ней аттестованного ролика).

5) В зависимости от совокупности измеряемых параметров изделия различают поэлементный и комплексный методы измерения.

Поэлементный метод характеризуется измерением каждого параметра изделия в отдельности (например, эксцентриситета, овальности, огранки цилиндрического вала).

Комплексный метод характеризуется измерением суммарного пока­зателя качества (а не физической величины), на который оказывают влияние отдельные его составляющие (например, измерение радиального биения цилиндрической детали, на которое влияют эксцентриситет, овальность и др.).

2. Методы измерений

Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализо­ванным принципом измерений. Можно выделить следующие методы из­мерений.

По способу получения значения измеряемых величин различают два основных метода измерений.

Метод непосредственной оценки – метод измерения, при котором значение величины определяют непосредственно по отсчетному устройству измерительного прибора прямого действия.

Метод сравнения с мерой – метод измерения, при котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.

Разновидности метода сравнения:

  • метод противопоставления, при котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения;
  • дифференциальный метод, при котором измеряемую величину срав­нивают с известной величиной, воспроизводимой мерой;
  • нулевой метод, при котором результирующий эффект воздействия величин на прибор сравнения доводят до нуля (например, измерение электрического сопротивления по схеме моста с полным его уравнове­шиванием);
  • метод совпадений, при котором разность между измеряемой величи­ной и величиной, воспроизводимой мерой, определяют, используя совпа­дения отметок шкал или периодических сигналов (например, считывание размера по основной и нониусной шкалам штангенциркуля).
Читайте также:  Приказ средства измерения медицинского назначения

При измерении линейных величин независимо от рассмотренных методов различают контактный и бесконтактный методы измерений.

В зависимости от измерительных средств, используемых в процессе измерения, различают:

  • инструментальный метод;
  • экспертный метод, который основан на использовании данных не­скольких специалистов (например, в квалиметрии, спорте, искусстве, медицине);
  • эвристические методы, которые основаны на интуиции. Широко ис­пользуется способ попарного сопоставления, когда измеряемые величины сравниваются между собой попарно, а затем производится ранжирование на основании результатов этого сравнения;
  • органолептические методы оценки, которые основаны на использо­вании органов чувств человека (осязания, обоняния, зрения, слуха, вкуса). Например, оценка шероховатости поверхности по образцу зрительно или на ощупь.

3. Понятие о точности измерений

Точность результата измерения – характеристика качества измерения, отражающая близость к нулю погрешности его результата.

Эти погрешности являются следствием многих причин: несовершенства средств измерений, метода измерений, опыта оператора; недостаточной тщательности проведения измерения; воздействия внешних условий и т.д. Для оценки степени приближения результатов измерения к истинному значению измеряемой величины используются методы теории вероятности и математической статистики, что позволяет с определенной достоверностью оценить границы погрешностей, за пределы которых они не выходят. Это дает возможность для каждого конкретного случая выбрать средства и методы измерения, обеспечивающие измерение результата, погрешности которого не превышают заданных границ с требуемой степенью доверия к результатам измерений (достоверностью).

Класс точности – обобщённая метрологическая характеристика средства измерения.

Класс точности определяется и обозначается по-разному. Наибольшее распространение получили три варианта, каждый представляет собой выраженное в процентах значение относительной погрешности:

– относительно измеренного значения (относительная погрешность),

– относительно максимального значения шкалы (приведённая погрешность),

– относительно участка шкалы (приведённая к участку шкалы погрешность).

Рассмотрим эти три варианта.

Вариант 1. Относительная погрешность.

Чтобы по классу точности определить значение абсолютной погрешности, результат измерения умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В.

Абсолютная погрешность составит: (10,000 В ∙ 0,1 %) / 100 % = 0,010 В. Запись результата: (10,000 ± 0,010) В, с вероятностью 95 % (эта вероятность по умолчанию назначается для технических измерений, исходя из этой вероятности определяется и класс точности). При нормировании по относительной погрешности, значение класса точности заключают в кружок. Как правило, обозначение класса точности размещают в правом нижнем углу на шкале средства измерений.

Вариант 2. Приведённая погрешность.

Чтобы по классу точности определить значение абсолютной погрешности, максимальное значение шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Например, вольтметром класса точности 0,1 получено значение 10,000 В. Максимальное значение шкалы составляет 20,000 В.

Абсолютная погрешность составит: (20,000 В ∙ 0,1 %) / 100 % = 0,020 В. Запись результата: (10,000 ± 0,020) В, с вероятностью 95 %. При нормировании по приведённой погрешности, значение класса точности не сопровождают никакими знаками.

Вариант 3. Приведённая к участку шкалы погрешность.

Чтобы по классу точности определить значение абсолютной погрешности, размер участка шкалы умножают на класс точности и делят на сто, чтобы избавиться от процентов. Рассмотрим два примера, для случая, когда вся шкала поделена на два участка.

Пример 1. Участок шкалы от 0,000 В до 12,000 В, отмечен галочкой. Вольтметром класса точности 0,1 получено значение 10,000 В.

Абсолютная погрешность составит: (12,000 В ∙ 0,1 %) / 100 % = 0,012 В. Запись результата: (10,000 ± 0,012) В, с вероятностью 95 %.

Пример 2. Участок шкалы от 12,000 В до 20,000 В, также отмечен галочкой. Вольтметром класса точности 0,1 получено значение 15,000 В.

Абсолютная погрешность составит: (8,000 В ∙ 0,1 %) / 100 % = 0,008 В. Запись результата: (15,000 ± 0,008) В, с вероятностью 95 %. При нормировании по приведённой к участку шкалы погрешности, значение класса точности помещают над галочкой. Участки шкалы, относительно которых нормируется погрешность, обозначают галочками.

Варианты классов точности обусловлены отличием конструктивных, системных и схемотехнических решений средств измерений.

Корректная запись результатов

Запись результатов измерений производится по следующим правилам.

1) Погрешность указывается двумя значащими цифрами, если первая равна 1 или 2. Погрешность указывается одной значащей цифрой, если первая равна 3 или более. Все остальные цифры должны быть не значащими.

Значащей цифрой называется любая цифра числа, записанного в виде десятичной дроби, начиная слева с первой отличной от нуля цифры, независимо от того, где она находится – до запятой или после запятой.

2) Результат измерения округляется в соответствии с его погрешностью, т.е. записывается с той же точностью, что и погрешность.

Рассмотрим пример. Результат измерения: 10,645701, погрешность 0,012908.

1) Рассматриваем погрешность. Первая значащая цифра 1, поэтому оставляем две значащие цифры, округляя, записываем: 0,013.

2) Рассматриваем результат измерения. Погрешность записана с точностью до третьего знака после запятой, поэтому в результате также оставим три знака. Округляя, записываем: 10,646.

Корректная запись: 10,646 ± 0,013.

Корректная запись обеспечивает адекватность и сопоставимость результатов различных измерений и является одним из элементов единства измерений. Как правило, отбрасывание избыточных цифр не приводит к дополнительной погрешности, поскольку избыточные цифры обусловлены точностью вычислений, а не точностью измерений.

4. Основы обеспечения единства измерений

Специализация и кооперирование производства в масштабах страны, основанные на принципах взаимозаменяемости, требуют обеспечения и сохранения единства измерений.

Обеспечение единства измерений – деятельность метрологических служб, направленная на достижение и поддержание единства измерений в соответствии с правилами, требованиями и нормами, установленными государственными стандартами и другими нормативно-техническими документами в области метрологии.

В 1993 г. был принят Закон Российской Федерации «Об обеспечении единства измерений», который устанавливает правовые основы обеспечения единства измерений в нашей стране. Он состоит из семи разделов: общие положения; единицы величин, средства и методики выполнения измерений; метрологические службы; государственный метрологический контроль и надзор; калибровка и сертификация средств измерений; ответственность за нарушение закона и финансирование работ по обеспечению единства измерений. В Законе дано следующее определение понятия «единство измерения»:

«Единство измерения – состояние измерений, при котором их результаты выражены в узаконенных единицах величин и погрешности измерений не выходят за установленные границы с заданной вероятностью».

Обеспечение единства измерений является задачей метрологических служб.

Метрологическая служба – совокупность субъектов, деятельности и видов работ, направленных на обеспечение единства измерений.

Закон определяет, что Государственная метрологическая служба находится в ведении Госстандарта России и включает: государственные научные метрологические центры; органы Государственной метрологической службы регионов страны, а также городов Москва и Санкт-Петербург.

Источник