Меню

Виды погрешностей при измерениях физика



Виды погрешностей измерения

Погрешность измерения – это отклонение результата измерений от истинного значения измеряемой величины. Чем меньше погрешность, тем выше точность. Виды погрешностей представлены на рис. 11.

Систематическая погрешность – составляющая погрешности измерения, остающаяся постоянной или закономерно изменяющаяся при повторных измерениях одной и той же величины. К систематическим относятся, например, погрешности от несоответствия действительного значения меры, с помощью которой выполнялись измерения, ее номинальному значению (погрешности показания прибора при неправильной градуировке шкалы).

Систематические погрешности могут быть изучены опытным путем и исключены из результатов измерений путем введения соответствующих поправок.

Поправка– значение величины, одноименной с измеряемой, прибавляемое к полученному при измерениях значению с целью исключения систематической погрешности.

Случайная погрешность – это составляющая погрешности измерения, изменяющаяся случайным образом при повторных измерениях одной и той же величины. Например, погрешности вследствие вариации показаний измерительного прибора, погрешности округления или отсчитывания показаний прибора, колебаний температуры в процессе измерения и т.д. Их нельзя установить заранее, но их влияние можно уменьшить путем многократных повторных измерений одной величины и обработкой опытных данных на основе теории вероятности и математической статистики.

К грубым погрешностям (промахам) относятся случайные погрешности, значительно превосходящие погрешности, ожидаемые при данных условиях измерения. Например, неправильный отсчет по шкале прибора, неправильная установка измеряемой детали в процессе измерения и т.д. Грубые погрешности не принимаются во внимание и исключаются из результатов измерения, т.к. являются результатом просчета.

Рис.11. Классификация погрешностей

Абсолютная погрешность– погрешность измерения, выраженная в единицах измеряемой величины. Абсолютную погрешность определяют по формуле.

= изм., (1.5)

где изм. — измеренное значение; — истинное (действительное) значение измеряемой величины.

Относительная погрешность измерения – отношение абсолютной погрешности к истинному значению физической величины (ФВ):

=или 100% (1.6)

На практике вместо истинного значения ФВ используют действительное значение ФВ, под которым подразумевают значение, отличающееся от истинного так мало, что для данной конкретной цели этим отличием можно пренебречь.

Приведенная погрешность – определяется как отношение абсолютной погрешности к нормирующему значению измеряемой физической величины, то есть:

, (1.7)

где XN нормирующее значение измеряемой величины.

Нормирующее значение XN выбирают в зависимости от вида и характера шкалы прибора. Это значение принимают равным:

— конечному значению рабочей части шкалы . XN = XК , если нулевая отметка – на краю или вне рабочей части шкалы (равномерная шкала рис.12, аXN = 50; рис. 12, бXN = 55; степенная шкала — XN = 4 на рис.12, е);

— сумме конечных значений шкалы (без учета знака), если нулевая отметка – внутри шкалы (рис.12, вXN = 20 + 20 = 40; рис.12, гXN = 20 + 40 = 60);

— длине шкалы, если она существенно неравномерна (рис.12, д). В этом случае, поскольку длина выражается в миллиметрах, то абсолютная погрешность выражается также в миллиметрах.

Рис. 12. Виды шкал

Погрешность измерения является результатом наложения элементарных ошибок, вызываемых различными причинами. Рассмотрим отдельные составляющие суммарной погрешности измерений.

Методическая погрешностьобусловлена несовершенством метода измерения, например, неправильно выбранной схемой базирования (установки) изделия, неправильно выбранной последовательностью проведения измерений и т.п. Примерами методической погрешности являются:

Погрешность отсчитывания – возникает из-за недостаточно точного отсчитывания показаний прибора и зависит от индивидуальных способностей наблюдателя.

Погрешность интерполяции при отсчитывании – происходит от недостаточно точной оценки на глаз доли деления шкалы, соответствующей положению указателя.

Погрешность от параллакса возникает вследствие визирования (наблюдения) стрелки, расположенной на некотором расстоянии от поверхности шкалы в направлении не перпендикулярном поверхности шкалы (рис. 13).

Погрешность от измерительного усилия возникают из-за контактных деформаций поверхностей в месте соприкосновения поверхностей измерительного средства и изделия; тонкостенных деталей; упругих деформаций установочного оборудования, например, скоб, стоек или штативов.

Рис.13. Схема возникновения погрешности от параллакса.

Погрешность от параллакса n прямопропорциональна расстоянию h указателя 1 от шкалы 2 и тангенсу угла φ линии зрения наблюдателя к поверхности шкалы n= h × tg φ (рис. 13).

Инструментальная погрешность – определяется погрешностью применяемых средств измерения, т.е. качеством их изготовления. Примером инструментальной погрешности является погрешность от перекоса.

Погрешность от перекоса возникает в приборах, в конструкции которых не соблюден принцип Аббе, состоящий в том, что линия измерения должная являться продолжением линии шкалы, например перекос рамки штангенциркуля, изменяет расстояние между губками 1 и 2 (рис. 14).

Погрешность определения измеряемого размера из-за перекоса пер.= l × cosφ. При выполнении принципа Аббе l × cosφ = 0 соответственно пер. = 0.

Читайте также:  Как вычислить абсолютную погрешность измерения физика

Субъективные погрешностисвязаны с индивидуальными особенностями оператора. Как правило, эта погрешность возникает из-за ошибок в отсчете показаний и неопытности оператора.

Рассмотренные выше разновидности инструментальной, методической и субъективной погрешностей вызывают появление систематических и случайных погрешностей, из которых складывается суммарная погрешность измерения. Они также могут приводить к грубым погрешностям измерений. В суммарную погрешность измерения могут входить погрешности, обусловленные влиянием условий измерений. К ним относятся основные и дополнительные погрешности.

Рис.14. Погрешность измерения от перекоса губок штангенциркуля.

Основная погрешность – это погрешность средства измерения при нормальных условиях эксплуатации. Как правило, нормальными условиями эксплуатации являются: температура 293 ± 5 К или 20 ± 5°С, относительная влажность воздуха 65 ± 15% при 20°С, напряжение в сети питания 220 В ± 10% с частотой 50 Гц ± 1%, атмосферное давление от 97,4 до 104 КПа, отсутствие электрических и магнитных полей.

В рабочих условиях, зачастую отличающихся от нормальных более широким диапазоном влияющих величин, появляется дополнительная погрешность средств измерений.

Дополнительная погрешность возникает в результате нестабильности режима работы объекта, электромагнитных наводок, колебания параметров источников питания, наличия влаги, ударов и вибраций, температуры и т.п.

Например, отклонение температуры от нормального значения +20°С приводит к изменению длины деталей измерительных средств и изделий. Если невозможно выполнить требования к нормальным условиям, то в результат линейных измерений следует вводить температурную поправку DХt, определяемую по формуле:

где ХИЗМ. — измеряемый размер; α1 и α2 — коэффициенты линейного расширения материалов измерительного средства и изделия; t1 и t2 — температуры измерительных средств и изделия.

Дополнительную погрешность нормируют в виде коэффициента, указывающего «на сколько» или «во сколько» изменяется погрешность при отклонении номинального значения. Например, указание, что температурная погрешность вольтметра составляет ±1% на 10°С, означает, что при изменении среды на каждые 10°С добавляется дополнительная погрешность 1%.

Таким образом, повышение точности измерения размеров добиваются за счет уменьшения влияния отдельных погрешностей на результат измерения. Например, нужно выбирать наиболее точные приборы, устанавливать их на ноль (размер) по концевым мерам длины высокого разряда, поручать измерения опытным специалистам и т.д.

Статические погрешности являются постоянными, не изменяющимися в процессе измерения, например неправильная установка начала отсчета, неправильная настройка СИ.

Динамические погрешности являются переменными в процессе измерения; они могут монотонно убывать, возрастать или изменяться периодически.

На каждое средство измерений погрешность приводится только в какой-то одной форме.

Если погрешность СИ при неизменных внешних условиях постоянна во всем диапазоне измерений (задается одним числом), то

Если погрешность меняется в указанном диапазоне (задается линейной зависимостью), то

При D = ± а погрешность называется аддитивной, а при D =± (а+bx)мультипликативной.

Если погрешность выражается в виде функции D = f(x), то она называется нелинейной.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Теория погрешностей Измерение физических величин

Теория погрешностей

Измерение физических величин

В основе точных естественных наук лежат измерения. При измерениях значения величин выражаются в виде чисел, которые указывают во сколько раз измеренная величина больше или меньше другой величины, значение которой принято за единицу. Полученные в результате измерений числовые значения различных величин могут зависеть друг от друга. Связь между такими величинами выражается в виде формул, которые показывают, как числовые значения одних величин могут быть найдены по числовым значениям других.

При измерениях неизбежно возникают погрешности. Необходимо владеть методами, применяемыми при обработке результатов, полученных при измерениях. Это позволит научиться получать из совокупности измерений наиболее близкие к истине результаты, вовремя заметить несоответствия и ошибки, разумно организовать сами измерения и правильно оценить точность полученных значений.

Если измерение заключается в сравнении данной величины с другой, однородной величиной, принятой за единицу, то измерение в этом случае называется прямым.

Прямые (непосредственные) измерения – это такие измерения, при которых мы получаем численное значение измеряемой величины либо прямым сравнением ее с мерой (эталоном), либо с помощью приборов, градуированных в единицах измеряемой величины.

Однако далеко не всегда такое сравнение производится непосредственно. В большинстве случаев измеряется не сама интересующая нас величина, а другие величины, связанные с нею теми или иными соотношениями и закономерностями. В этом случае для измерения необходимой величины приходится предварительно измерить несколько других величин, по значению которых вычислением определяется значение искомой величины. Такое измерение называется косвенным.

Читайте также:  Люксметр предназначен для измерения

Косвенные измерения состоят из непосредственных измерений одной или нескольких величин, связанных с определяемой величиной количественной зависимостью, и вычисления по этим данным определяемой величины.

В измерениях всегда участвуют измерительные приборы, которые одной величине ставят в соответствие связанную с ней другую, доступную количественной оценке с помощью наших органов чувств. Например, силе тока ставится в соответствие угол отклонения стрелки на шкале с делениями. При этом должны выполняться два основных условия процесса измерения: однозначность и воспроизводимость результата. эти два условия всегда выполняются только приблизительно. Поэтому процесс измерения содержит наряду с нахождением искомой величины и оценку неточности измерения.

Современный инженер должен уметь оценить погрешность результатов измерений с учетом требуемой надежности. Поэтому большое внимание уделяется обработке результатов измерений. Знакомство с основными методами расчета погрешностей – одна из главных задач лабораторного практикума.

Почему возникают погрешности?

Существует много причин для возникновения погрешностей измерений. Перечислим некоторые из них.

· процессы, происходящие при взаимодействии прибора с объектом измерений, неизбежно изменяют измеряемую величину. Например, измерение размеров детали с помощью штангенциркуля, приводит к сжатию детали, то есть к изменению ее размеров. Иногда влияние прибора на измеряемую величину можно сделать относительно малым, иногда же оно сравнимо или даже превышает саму измеряемую величину.

· Любой прибор имеет ограниченные возможности однозначного определения измеряемой величины вследствие конструктивной неидеальности. Например, трение между различными деталями в стрелочном блоке амперметра приводит к тому, что изменение тока на некоторую малую, но конечную, величину не вызовет изменения угла отклонения стрелки.

· Во всех процессах взаимодействия прибора с объектом измерения всегда участвует внешняя среда, параметры которой могут изменяться и, зачастую, непредсказуемым образом. Это ограничивает возможность воспроизводимости условий измерения, а, следовательно, и результата измерения.

· При визуальном снятии показаний прибора возможна неоднозначность в считывании показаний прибора вследствие ограниченных возможностей нашего глазомера.

· Большинство величин определяется косвенным образом на основании наших знаний о связи искомой величины с другими величинами, непосредственно измеряемыми приборами. Очевидно, что погрешность косвенного измерения зависит от погрешностей всех прямых измерений. Кроме того, в ошибки косвенного измерения свой вклад вносят и ограниченность наших познаний об измеряемом объекте, и упрощенность математического описания связей между величинами, и игнорирование влияния тех величин, воздействие которых в процессе измерения считается несущественным.

Классификация погрешностей

Значение погрешности измерения некоторой величины принято характеризовать:

1. Абсолютной погрешностью – разностью между найденным на опыте (измеренным) и истинным значением некоторой величины

. (1)

Абсолютная погрешность показывает, на сколько мы ошибаемся при измерении некоторой величины Х.

2. Относительной погрешностью равной отношению абсолютной погрешности к истинному значению измеряемой величины Х

. (2)

Относительная погрешность показывает, на какую долю от истинного значения величины Х мы ошибаемся.

Качество результатов измерений какой-то величины характеризуется относительной погрешностью . Величина может быть выражена в процентах.

Из формул (1) и (2) следует, что для нахождения абсолютной и относительной погрешностей измерений, нужно знать не только измеренное, но и истинное значение интересующей нас величины. Но если истинное значение известно, то незачем производить измерения. Цель измерений всегда состоит в том, чтобы узнать не известное заранее значение некоторой величины и найти если не ее истинное значение, то хотя бы значение, достаточно мало от него отличающееся. Поэтому формулы (1) и (2), определяющие величину погрешностей на практике не пригодны. При практических измерениях погрешности не вычисляются, а оцениваются. При оценках учитываются условия проведения эксперимента, точность методики, качество приборов и ряд других факторов. Наша задача: научиться строить методику эксперимента и правильно использовать полученные на опыте данные для того, чтобы находить достаточно близкие к истинным значения измеряемых величин, разумно оценивать погрешности измерений.

Говоря о погрешностях измерений, следует, прежде всего, упомянуть о грубых погрешностях (промахах), возникающих вследствие недосмотра экспериментатора или неисправности аппаратуры. Грубых ошибок следует избегать. Если установлено, что они произошли, соответствующие измерения нужно отбрасывать.

Не связанные с грубыми ошибками погрешности опыта делятся на случайные и систематические.

случайные погрешности. Многократно повторяя одни и те же измерения, можно заметить, что довольно часто их результаты не в точности равны друг другу, а «пляшут» вокруг некоторого среднего (рис.1). Погрешности, меняющие величину и знак от опыта к опыту, называют случайными. Случайные погрешности непроизвольно вносятся экспериментатором вследствие несовершенства органов чувств, случайных внешних факторов и т. д. Если погрешность каждого отдельного измерения принципиально непредсказуема, то они случайным образом изменяют значение измеряемой величины. Эти погрешности можно оценить только при помощи статистической обработки многократных измерений искомой величины.

Читайте также:  Электронные весы напольные погрешность измерения

Систематические погрешности могут быть связаны с ошибками приборов (неправильная шкала, неравномерно растягивающаяся пружина, неравномерный шаг микрометрического винта, не равные плечи весов и т. д.) и с самой постановкой опыта. Они сохраняют свою величину (и знак!) во время эксперимента. В результате систематических погрешностей разбросанные из-за случайных погрешностей результаты опыта колеблются не вокруг истинного, а вокруг некоторого смещенного значения (рис.2). погрешность каждого измерения искомой величины можно предсказать заранее, зная характеристики прибора.

Расчет погрешностей прямых измерений

Систематические погрешности. Систематические ошибки закономерным образом изменяют значения измеряемой величины. Наиболее просто поддаются оценке погрешности, вносимые в измерения приборами, если они связаны с конструктивными особенностями самих приборов. Эти погрешности указываются в паспортах к приборам. Погрешности некоторых приборов можно оценить и не обращаясь к паспорту. Для многих электроизмерительных приборов непосредственно на шкале указан их класс точности.

Класс точности прибора – это отношение абсолютной погрешности прибора к максимальному значению измеряемой величины , которое можно определить с помощью данного прибора (это систематическая относительная погрешность данного прибора, выраженная в процентах от номинала шкалы ).

.

Тогда абсолютная погрешность такого прибора определяется соотношением:

.

Для электроизмерительных приборов введено 8 классов точности: 0,05; 0,1; 0,5; 1,0; 1,5; 2,0; 2,5; 4.

Чем ближе измеряемая величина к номиналу, тем более точным будет результат измерения. Максимальная точность (т. е. наименьшая относительная ошибка), которую может обеспечить данный прибор, равна классу точности. Это обстоятельство необходимо учитывать при использовании многошкальных приборов. Шкалу надо выбирать с таким расчетом, чтобы измеряемая величина, оставаясь в пределах шкалы, была как можно ближе к номиналу.

Если класс точности для прибора не указан, то необходимо руководствоваться следующими правилами:

· Абсолютная погрешность приборов с нониусом равна точности нониуса.

· Абсолютная погрешность приборов с фиксированным шагом стрелки равна цене деления[1].

· Абсолютная погрешность цифровых приборов равна единице минимального разряда.

· Для всех остальных приборов абсолютная погрешность принимается равной половине цены деления.

Случайные погрешности. Эти погрешности имеют статистический характер и описываются теорией вероятности. Установлено, что при очень большом количестве измерений вероятность получить тот или иной результат в каждом отдельном измерении можно определить при помощи нормального распределения Гаусса. При малом числе измерений математическое описание вероятности получения того или иного результата измерения называется распределением Стьюдента (более подробно об этом можно прочитать в пособии «Ошибки измерений физических величин»).

Как же оценить истинное значение измеряемой величины?

Пусть при измерении некоторой величины мы получили N результатов: . Среднее арифметическое серии измерений ближе к истинному значению измеряемой величины, чем большинство отдельных измерений. Для получения результата измерения некоторой величины используется следующий алгоритм.

1). Вычисляется среднее арифметическое серии из N прямых измерений:

.

2). Вычисляется абсолютная случайная погрешность каждого измерения – это разность между средним арифметическим серии из N прямых измерений и данным измерением:

.

3). Вычисляется средняя квадратичная абсолютная погрешность :

.

4). Вычисляется абсолютная случайная погрешность . При небольшом числе измерений абсолютную случайную погрешность можно рассчитать через среднюю квадратичную погрешность и некоторый коэффициент , называемый коэффициентом Стъюдента:

,

Коэффициент Стьюдента зависит от числа измерений N и коэффициента надежности (в таблице 1 отражена зависимость коэффициента Стьюдента от числа измерений при фиксированном значении коэффициента надежности ).

Коэффициент надежности – это вероятность, с которой истинное значение измеряемой величины попадает в доверительный интервал.

Доверительный интервал – это числовой интервал, в который с определенной вероятностью попадает истинное значение измеряемой величины.

Таким образом, коэффициент Стъюдента – это число, на которое нужно умножить среднюю квадратичную погрешность, чтобы при данном числе измерений обеспечить заданную надежность результата.

Чем большую надежность необходимо обеспечить для данного числа измерений, тем больше коэффициент Стъюдента. С другой стороны, чем больше число измерений, тем меньше коэффициент Стъюдента при данной надежности. В лабораторных работах нашего практикума будем считать надежность заданной и равной 0,9. Числовые значения коэффициентов Стъюдента при этой надежности для разного числа измерений приведены в таблице 1.

Источник