Меню

Впервые измерил размер земли



История измерений формы и размеров Земли

Не все знают , что о форме и размерах Земли люди имели достаточно реальные представления еще до начала нашей эры . Так , древнегреческий философ Аристотель ( 384 — 322 до н. э. ) полагал , что Земля имеет шарообразную форму , а в качестве доказательства приводил округлость формы земной тени во время лунных затмений , поскольку только шар при освещении с любой стороны всегда дает круглую тень .

Эратосфен , живший в Александрии ( город на севере Египта , основан Александром Македонским в гг. до н. э. ) выбрал , около 230 г. до Р . X. , для своего градусного измерения дугу александрийского меридиана , предположив , что на нем же лежит Ассуан ( Ассуан , — 24° 8 ’ 6 » ш. и 30° 34 ’ 39 » д. , последний из городов , встречаемых в Египте со стороны Нубии ) . Светилом для измерения высот служило Солнце . Эратосфен узнал , что в Ассуане , во время летнего солнцестояния , в полдень , можно видеть изображение Солнца в глубоких колодцах , т. е. , что Солнце достигает там в это время зенита , и высота его равна стало быть 90°. В Александрии , по наблюдениям тени гномона ( гномон — древнейший астрономический инструмент , состоящий из вертикального стержня на горизонтальной площадке . По длине и направлению тени стержня можно определять высоту и азимут Солнца ) , в то же самое время , Солнце оказывалось удаленным от зенита на одну пятидесятую часть окружности или на 7°12’ , так что для разности широт этих городов получилась непосредственно величина 7°12’ . С другой стороны , из рассказов купцов , сопровождавших свои караваны , Эратосфен узнал , что путь между Ассуаном и Александрией лежит почти в направлении полуденной тени , т. е. по меридиану , и, судя по времени , необходимому на весь переход , и по скорости движения караванов , расстояние между названными городами равно 5000 стадиям ( 800 км) . Если 7°12 ’ соответствуют 5000 стадиям ( 800 км) , то длина окружности или 360° выходит равна 250 000 стадий ( 40 000 км) , а радиус Земли = 39 789 стадий ( 6 366 км) .

По новейшим определениям разность широт Александрии и Ассуана равна 7°7’ , и оба города не лежат на одном меридиане , ( Ассуан почти на 3° восточнее Александрии) , там не менее астрономическая часть работы Эратосфена для своего времени была почти безупречна . К несчастью истинная длина египетской стадии была не известна . Разные ученые исследователи определяют ее от 158 до 185 метров , и потому о точности этого первого градусного измерения в настоящее время нельзя составить себе верного представления . Во всяком случае , как упомянуто выше , основание способа Эратосфена совершенно верно и применяется до сих пор .

В связи с этим непонятно , как полтора тысячелетия ( ! ) спустя Христофор Колумб настолько ошибся с оценкой размеров Земли , что принял Американский континент за часть Индии!

Следующая попытка определить размеры Земли была сделана Посидонием ( Посидоний из Апамеи в Сирии , философ–стоик , математик и астроном , до Р. Хр . В философии представитель синкретизма; как астроном известен своей попыткой ( второй , первая принадлежала Эратосфену ) определить размеры земного шара ) . Крайними точками дуги меридиана избраны были Александрия и остров Родос . Угловое расстояние получено из наблюдений звезды Канопуса ( Канопус ( Argus) , звезда первой величины в созвездии « Корабль Арго»; видна в нашем полушарии южнее 37,5° сев . широты ) , которая в Александрии поднимается до высоты 7½° , а на Родосе едва показывается на горизонте , так что высота ее там почти равна 0° . Линейное расстояние оценено по времени перехода судов и принято равным 5 000 стадиям ( 800 км) . Отсюда окружность Земли оказывается 240 000 стадий ( 38 400 км) . Результат Посидония признается менее удовлетворительным , чем вывод Эратосфена , потому что на высоты светил близ горизонта весьма значительно влияет преломление лучей в атмосфере , тогда еще неизвестное , да и оценка линейного расстояния по морю не могла быть благонадежной . Ныне известно , что разность широт Александрии и Родоса всего 5° , и они далеко не лежать на одном меридиане .

Замечательно , что в сочинениях Птоломея ( 87 — 165) , известного александрийского астронома , не упоминается об определении размеров Земли , хотя в его « Географии » видимо подразумевается ее шарообразность и длина одного градуса принимается равною 500 стадиям ( 80 км) , что дает для окружности всей Земли 180 000 стадий ( 28 800 км) — число значительно меньшее , чем результаты Эратосфена и Посидония .

После уничтожения александрийской библиотеки , в смутные годы первых веков нашей эры , всякие научные работы прервались , и новая попытка градусного измерения сделана лишь в 827 году арабами , которые , достигнув политического могущества , в лице своих калифов с любовью покровительствовали развитию точных наук . Калиф Альмамум , сын Гарун – , приказал своим астрономам Калид – и –Изп измерить дугу меридиана в равнине Синджар , лежащей к западу от реки Тигра и нынешнего города Мосула. В избранной исходной точке , около 35° северной широты , арабские ученые разделились на две парии и направились одна на север , другая па юг, производя измерения арабскими локтями . Эти измерения продолжались до тех пор , пока каждая пария не прошла по меридиану 1° , что определялось имевшимися тогда угломерными инструментами по высотам звезд . Одна пария получила для градуса меридиана величину 56, а другая 56⅔ мили по 4 000 локтей . Второе число было признано точнее первого и принято за величину градуса меридиана .

Покуда длина арабского локтя была неизвестна , нельзя было составить себе понятие о точности измерения арабов; известно было лишь , что арабский локоть имел 27 дюймов , а каждый дюйм равнялся шести положенным в ряд ячменным зернам . Но недавно , на нильском острове Рода , под Каиром , на колонне из тесанного камня , найдены черты , означающие арабские локти , подразделенные на дюймы . Оказалось , что арабский локоть равен приблизительно 49⅓ сантиметрам , так что длина арабской мили выходит около 1973 метров или 926.3 саженей . От перемножения этого числа на 56⅔ получается для длины градуса , под широтой 35° , 104.8 версты ( 111.088 км) , что весьма близко к современным определениям .

Читайте также:  Каким образом зная класс точности прибора найти абсолютную погрешность измерения

В средние века сведенья греков и арабов о шарообразности Земли и ее величине были забыты , и только в начале XVI века , после эпохи великих морских путешествий , произведена новая попытка определения размеров Земли . Именно , французский ученый и врач короля Франциска , Фернель ( 1497 — 1558) , в 1528 году , измерил дугу меридиана вблизи Парижа . Угловые высоты Солнца он определял при помощи треугольника с диоптрами , одна сторона которого была разделена на части , соответствующая минутам дуги , линейное же расстояние Фернель получил счетом оборотов колеса своей повозки . Длина градуса меридиана под широтою Парижа получилась равною 56 746 тоазам или около 51838 саженей ( 110.41 км) .

Итак , в первом приближении форма и размеры нашей планеты известны очень давно . А можно ли, находясь на ее поверхности , доказать , что она вращается? Оказывается , можно , и даже несколькими способами .

Вращение Земли

В 1672 году француз Рише случайно заметил , что у экватора маятниковые часы идут медленнее , чем в Париже . Объяснение этому факту нашел английский физик , астроном и математик Исаак Ньютон ( 1643 — 1727) . Вращение Земли должно приводить к появлению центробежной силы , направленной перпендикулярно оси вращения ( не поверхности! ) в сторону , противоположную этой оси . То есть в средних широтах центробежная сила меньше по величине ( поскольку расстояние до оси вращения меньше ) и направлена под углом к горизонту , а на экваторе она достигает наибольшей величины , что и приводит к уменьшению силы тяжести g на экваторе и, вследствии этого , замедлению ( увеличению периода Т) колебаний маятника длиной l, поскольку T = 2p(l/g)1/2 .

В 1851 году французский физик Жан Фуко ( 1819 — 1868 ) продемонстрировал на опыте , что плоскость качания маятника со временем поворачивается , что объясняется суточным вращением Земли вокруг своей оси . Позже этот опыт повторяли в разных городах , в том числе и в Ленинграде , в Исаакиевском соборе . Очевидно , что эффект поворота плоскости качания маятника зависит от широты места проведения опыта , наиболее выражен на земных полюсах и отсутствует на экваторе . Тот же Жан Фуко изобрел гироскоп , и его свойство сохранять направление оси вращения также доказывало суточное вращение Земли ( ось гироскопа при любом положении за сутки опишет окружность вокруг проекции на небо земной оси , а почему — будет объяснено в главе про экваториальную систему координат) .

Другим свидетельством земного вращения является действие поворотного , или кориолисова ускорения на движущиеся воздушные и водные массы . Этот эффект проявляется как отклонение от меридианального направления ветров и океанских течений , а также в подмывании одного из берегов реками , текущими в направлении север — юг. Суть явления очень проста . Если , например , река течет с юга на север , то ее воды по инерции стремятся сохранить ту линейную скорость вращения ( перпендикулярную направлению течения) , которую они имели южнее , т. е. отклониться к востоку ( Земля вращается с запада на восток) . А в результате будет размываться восточный берег .

И еще одно доказательство вращения Земли — отклонение падающих тела от направления отвесной линии . Объяснение точно такое же: линейная скорость вращения тем больше , чем выше над поверхностью тело , а при падении эта скорость сохраняется , и за время полета точка , прямо над которой сначала находилось падающее тело , сместится на восток на меньшее расстояние , чем само тело в момент приземления , т. е. тело упадет восточнее .

Более точная форма Земли

Зная период вращения ( 24 часа ) и радиус Земли легко вычислить линейную скорость вращения на экваторе: v0 = w R, где w = 2p/86400 об/сек , и при R = 6378 км получается v0

460 м/c ( на широте j эта скорость составит v = v0*cos(j)) . На тело массой m будет действовать центробежная сила Fц = m*w2*R и сила тяжести по закону всемирного тяготения Fg= G*M*m/R2 , где М — масса Земли , R — ее радиус . Отношение Fц к Fg для шарообразной Земли составит:

Fц / Fg= w2*R3/(G*M ) ( 2)

Если подставить сюда реальные значения М и R, то получим Fц / Fg= 3.45× , то есть на экваторе любое тело должно весить примерно на 0.3 % меньше , чем на полюсах . На самом деле это различие не превышает 0.55% .

Теперь самое время вспомнить , что форма Земли отличается от шара . Еще Ньютон теоретически доказал , что если пробурить до центра Земли два сообщающихся канала — один от Северного полюса , другой — от экватора , и заполнить их водой , то вода установилась бы на разных уровнях. В полярном колодце на воду действует только сила тяготения , а в экваториальном — еще и центробежная сила . Для того , чтобы оба столба воды оказывали на центр Земли одинаковое давление ( т. е. имели равный вес) , уровень воды в экваториальном колодце должен быть выше . По подсчетам Ньютона , эта разница должна составлять 1/230 долю от среднего радиуса Земли .

Такой расчет не так уж и сложен . Нужно прировнять вес каждого элементарного объема вещества на полюсе и на экваторе . То есть для равновесия на любом расстоянии r от центра Земли будет справедливо соотношение:

m*gп(r)=m*gэ(r) — m*w2*r ( 3)

Зависимость ускорения свободного падения от радиуса в полярном и экваториальном колодцах одинакова: gп(r) = gэ(r) = GM/r2 , где М — масса , заключенная внутри радиуса r : M(r) = r*4*p*r3/3 , где r — плотность вещества , заполняющего колодцы . Если все это подставить в уравнение равновесия ( 3) , сократить на m и проинтегрировать по всему радису Земли ( левую часть — от 0 до полярного радиуса Rп, правую — от 0 до экваториального радиуса Rэ) , то в результате получится соотношение:

Читайте также:  Как измерить давление тонометром and medical

Подставив в (4) среднюю плотность Земли 5.52 г/см 3 (она состоит в основном не из воды ) и экваториальный радиус Rэ=6378140 м, получим Rп

6356130 м, то есть полярный радиус должен быть меньше экваториального примерно на 22 км, а отношение f = ()/Rэ= 1/289.8 . Величина f называется сжатием Земли и в действительности равна 1/298.257 . Таким образом , вышеприведенный теоретический расчет хорошо согласуется с реальной формой земной поверхности . Даже несмотря на то, что мы не учитывали зависимость плотности от радиуса , а взяли усредненную плотность .

Таким образом , еще Ньютон показал , что Земля должна быть сплюснута у полюсов . То же самое следовало и из наблюдений быстровращающихся планет–гигантов — Юпитера и Сатурна . Однако проверить это на практике в отношении Земли было совсем не просто . Только в следующем веке было организовано несколько экспедиций специально для того , чтобы измерить длины двух дуг меридиана , по 1° каждая , одна как можно ближе к экватору , другая — к полюсу. В конце концов выяснилось , что дуга в 1° в экваториальных широтах ( измерения 1735 — 1743 гг. в Перу ) действительно короче , чем в полярных ( гг. в Лапландии) , что и является прямым доказательством сжатия Земли к полюсам . Здесь следует пояснить , что измерения дают не радиус Земли ( т. е. расстояние от поверхности до центра) , а радиус кривизны поверхности , т. е. радиус окружности , которая на данном участке ближе всего соответствует дуге меридиана . Поскольку меридианы у полюсов изогнуты слабее , чем у экватора , то в первом случае и радиусы их кривизны больше .

Кстати , результатом этих экспедиций стало также принятие новой единицы длины , которую определили как 1/40 000 000 часть от полной длины Парижского меридиана . Эта единица получила название метр , и поэтому неудивительно , что длина земного экватора так близка к круглому числу 40 000 км. Принятие новой единицы длины стало началом введения метрической системы мер и весов , а сам метр был выполнен в виде массивного стержня из сплава платины с иридием , переданного на вечное хранение в парижский архив . Последующие исследования показали , что принятая длина метра немного занижена по отношению к сорокамиллионной доли от окружности Земли , но менять стандарт сочли неразумным , так как каждое новое измерение вносило бы новые поправки , да и разные меридианы несколько отличаются по длине , так как фигура Земли не совпадает с эллипсоидом вращения. В настоящее время величина метра закреплена более точно и надежно , а до знака ее можно выразить как 1650763.73 длины волны излучения в вакууме оранжевой спектральной линии 86Kr .

Раз уж речь зашла о единицах длины , то стоит рассказать еще об одной . Поскольку полная длина меридиана принята за 40 000 км , то 1° от этой длины составит в среднем 1/360 его часть , что равно 111.111 км, а 1 ’ — 1.852 км. Последняя единица называется морской милей . Ее удобство для навигации , особенно в прошлые века , определяется тем , что широту местности вычисляют по высоте светил ( например , Солнца в момент его наибольшей высоты ) над горизонтом , а изменение высоты светила на 1 ’ ( за счет движения на север или на юг) как раз и соответствует перемещению наблюдателя на 1 морскую милю вдоль меридиана .

Осталось только упомянуть , что при еще более точном рассмотрении форма Земли отличается от эллипсоида вращения , и в масштабах меньше километра имеет весьма сложную форму поверхности , которая получила названия геоида . Между прочим , под поверхностью Земли в данном случае подразумевается не реальный рельеф поверхности со всеми горами , холмами и низинами , а усредненный уровень воды в океанах , который с помощью нивелирования удается продолжить и под сушей ( высота над уровнем моря) . Эта поверхность является уровневой , т. е. она всюду перпендикулярна к направлению силы тяжести и отличается от эллипсоида вращения не больше , чем на несколько сотен метров , а если за фигуру Земли принять трехосный эллипсоид ( экватор можно представить как эллипс с разностью полуосей около 200 м) , то отличие геоида от него не превысит 100 м. Это отличие вызвано неравномерным распределением масс как на поверхности Земли ( континенты и океаны) , так и внутри нее — вследствии их влияния на величину и направление силы тяжести . Изучение фигуры геоида — одна из задач геодезии и гравиметрии .

Масса Земли

Массу Земли с достаточной точностью измерил в 1797 году Генри Кавендиш . Для этого он использовал крутильные весы со свинцовыми шариками на концах . Приближая к этим шарикам с разных сторон два больших свинцовых шара и зная их массы , по углу закрутки весов Кавендиш измерил , во сколько раз сила притяжение маленького шара к большому отличается от силы притяжения Земли. В итоге масса Земли получилась 6×1021 тонн , что близко к значению , принятому в настоящее время .

Теперь снова вспомним закон всемирного тяготения . Ускорение , сообщаемое тяготение Земли любому телу на ее поверхности , называется ускорением силы тяжести . Оно направлено примерно к центру Земли и по величине приближенно равна:

где G — гравитационная постоянная , M — масса Земли , r — ее радиус . Если бы Земля не вращалась и имела форму шара со сферически–симметричным распределением масс внутри себя , то выражение ( 5) было бы точным . Однако на самом деле эти три условия не выполняются .

Направление силы тяжести для эллипсоидальной формы Земли немного отличается от направления на геометрический центр эллипсоида , совпадая с ним на экваторе и полюсах , и достигая максимальной величины отклонения ( 5’.7 ) на широтах +–45°. В то же время на экваторе величина силы притяжения эллипсоидальности Земли на f/2 меньше , чем на полюсе , то есть примерно на 1/600 долю .

Читайте также:  Прибор для измерения электроники

Кроме того , в ускорение силы тяжести входит центробежное ускорение , возникающее от суточного вращения Земли . Оно направлено перпендикулярно оси вращения , по радиусу r образованного параллелью круга и лежит в его плоскости . Центробежное ускорение равно w2*r , где w = 2*p/Т — угловая скорость вращения с периодом Т, причем для Земли нужно взять продолжительность звездных суток Т = 86146 с. На экваторе центробежное ускорение максимально: w2*r = 3.39 см/с2 , что составляет 1/288 долю от гравитационного ускорения силы тяжести , равного на экваторе 983.42 см/с2 . На экваторе центробежная сила прямо противоположна силе притяжения и поэтому вычитается из последней , что дает полное ускорение свободного падения g = 980.03 см/с2 . На полюсах центробежная сила отсутствует и не дает боковой составляющей .

В промежуточных широтах центробежная сила пропорциональна радиусу параллели r = r*cos(ja) , где r — текущее расстояние до центра Земли ( радиус–вектор) , а ja — геоцентрическая широта . Отличие ja от обычной географической широты j составляет j — ja = 11’.6*sin(2*j) . Поэтому центробежное ускорение w2*r = w2*r*cos(ja) можно разложить на вертикальную составляющую w2*r*cos(ja)*cos(j) и горизонтальную w2*r*cos(ja)*sin(j) , направленную по меридиану к экватору . Если пренебречь небольшим различием между ja и j, то горизонтальная составляющая центробежного ускорения w2*r*cos(j)*sin(j) будет максимальной на широте +–45° , достигая значения 1.7 см/с2 , что в угловой мере соответствует отклонению отвеса на 5.’9 к югу . Вертикальная составляющая центробежного ускорения w2*r*cos(j) (если пренебречь различием между направлением отвесной линии и направлением на центр Земли ) на экваторе даст w2*r , на широтах +–45° — 0.5*w2*r и нуль — на полюсах . Таким образом , на экваторе ускорение силы тяжести уменьшено на f за счет центробежной силы и на f/2 за счет уменьшения силы притяжения. В сумме эти два эффекта приводят к тому , что на экваторе ускорение силы тяжести на f/2+f = 1.5*f

1/200 меньше , чем на полюсах .

Точную зависимость ускорения силы тяжести от высоты вывел в 1743 г. французский математик А. Клеро:

g = g0*(1+b*sin2(j)) , b = ( g0 — gp)/g0 (6)

где g0 — ускорение силы тяжести на экваторе , gp — на полюсе , а коэффициент b = 2.5*q — f (здесь q — отношение центробежного ускорения к ускорению силы тяжести на экваторе w2*r/g0 , f — сжатие Земли). В современных числовых значениях формула Клеро выглядит так:

g = 978.03*(1+0.00529*sin2(j) ) ( 7)

Измерение ускорения силю тяжести в разных местах позволяет определить числовое значение b, а через него — сжатие Земли f, которое оказалось в хорошем согласии с измерениями дуг меридианов . Ускорение силы тяжести можно измерить несколькими способами , из них самый простой — по периоду качания маятника известной длины l:

T = 2*p*(l/g)1/2 , откуда g = 4*p2*l/T2 (8)

Измерением и изучением распределения ускорения силы тяжести по поверхности Земли занимается специальный раздел астрономии — гравиметрия . Это распределение позволяет не только получить величину сжатия Земли , но и найти отклонения фигуры геоида от точного эллипсоида и, кроме того , получить важные сведения о внутреннем строении Земли .

Из величины ускорения силы тяжести легко получить массу и среднюю плотность Земли . Например , на широте 45° по формуле Клеро ( 7) g = 980.62 см/с2 . Вертикальная составляющая центробежного ускорения на этой широте составит 0.5*w2*r = 1.7 см/с2 . Отсюда ускорение силы притяжения на широте 45° получится 982.32 см/с2 . Подставив эту величину и средний радиус Земли r = 6.370×108 см в фомулу Ньютона ( 5) , получим массу Земли М = 5.98×1027 г. Среднюю плотность Земли можно вычислить , если разделить массу М на объем Земли , что даст 5.52 г/см3 .

Параметры Земли

  • Экваториальный радиус а = 6378.140 км
  • Полярный радиус b = 6356.755 км
  • Средний радиус r = 6371.004 км
  • Радиус–вектор на уровне моря на широте j: r = a*(0.998 324 07 + 0.001 676 44*cos(2*j ) — 0.000 003 52*cos(4*j ) + … )
  • Сжатие Земли fe = ()/a = 0.003 352 81 = 1/298.257
  • Эксцентриситет земного меридиана e = ( ()/a2)1/2 = 0.081 820
  • Площадь поверхности 509 494 365 км 2 ,
    • из них суша — 29.2% ,
    • водная поверхность — 70.8%
  • Объем Земли 1.083 209×1012 км 3
  • Масса Земли 5.973×1027 г = 1/(332 946 + – 20) массы Солнца
  • Средняя плотность Земли 5.574 г/cм 3
  • Средняя плотность земной коры 2.80 г/cм 3
  • II космическая скорость у поверхности 11.2 км/с
  • Длина 1o географической долготы на широте j (111.321*cos(j) — 0.094*cos(3*j) ) км
  • Длина 1o географической широты на широте j (111.143 — 0.562*cos(2*j) ) км
  • Разность астрономической j и геоцентрической j ’ широт ( в системе МАС ) j — j ’ = 692«.74*sin(2*j ) — 1».163*sin(4*j ) + 0«.003*sin(6*j )
  • Угловая скорость вращения Земли 15».041/с = 0.000 072 921 об/с
  • Линейная скорость точки земной поверхности на широте j: v = 465.119*cos(j) м/с
  • Средняя скорость орбитального движения Земли 29.765 км/с

    100 000 км/ч

  • Наибольшая орбитальная скорость ( в перигелии ) 30.287 км/с
  • Наименьшая орбитальная скорость ( в афелии ) 29.291 км/с
  • Год звездный ( период обращения вокруг Солнца относительно звезд ) 365.25636 суток = 365 д 6 ч 9 мин 10 с
  • Год тропический ( период обращения вокруг Солнца относительно точки весеннего равноденствия ) 365.24220 суток = 365 д 5 ч 48 мин 46 с
  • Год аномалистический ( период обращения вокруг Солнца относительно перигелия ) 356.25964 суток = 365 д 6 ч 13 мин 53 с
  • Год драконический ( период обращения вокруг Солнца относительно узлов лунной орбиты ) 346.62003 суток = 346 д 14 ч 52 мин 51 с
  • Ускорение Земли к Солнцу 0.59 см/с 2
  • Ускорение силы тяжести на поверхности Земли ( стандартное ) g0 = 980.665 см/с 2
  • Ускорение силы тяжести на широте 45o ( абсолютное ) g45 = 980.616 см/с 2
  • Ночное излучение Земли ( в ясную ночь ) Дж/м 2 /с

Источник