Меню

Вычислите периметры многоугольников произведя как можно меньше измерений



Формула расчета периметра многоугольника

Что такое периметр многоугольника

Периметр многоугольника в геометрии — это результат сложения длин всех его сторон.

Свойства многоугольника

  1. Все стороны прямые.
  2. Стороны не пересекаются (кроме звездчатых).
  3. Двумерная фигура.
  4. Сумма внешних углов всегда равна 360º.
  5. Сумма внутренних углов равна \(\frac2\) (для правильных фигур).

Как вычислить периметр правильного многоугольника

Свойства правильного многоугольника

  1. Все стороны равны.
  2. Все углы равны.
  3. Центр равно удален ото всех вершин и сторон.
  4. Сумма всех углов равна 180º×(n−2).
  5. Все внешние углы при сложении их градусных мер дадут 360º.
  6. Все биссектрисы углов между сторонами равны и пересекают центр фигуры.
  7. Возможно вписать окружность и описать круг. Площадь кольца зависит от длины стороны многоугольника.

Формула

где a — длина стороны, n — количество сторон.

Для неправильного многоугольника

Описание

У неправильного многоугольника все стороны разного размера.

Формула

Его периметр (P) можно рассчитать, сложив все длины его сторон (a, b, c,d и т.д.). Это первый способ.

Второй способ: если есть стороны с одинаковыми длинами, формулу можно сократить, использовав умножение.

Дан прямоугольник со сторонами 4см, 4см, 2см и 2см. Чтобы узнать периметр, можно просто их все сложить, как показано в формуле выше. А можно сделать так: 4×2+2×2, так как стороны попарно равны.

Этот способ подойдет и для фигур с большим количеством сторон, некоторые из которых равны.

Дан восьмиугольник со сторонами 5см, 5см, 3см, 3см, 3см, 2см и 1см. Периметр можно высчитать сложением, а можно считать так: 5×2+3×3+2+1.

По заданным координатам

Как начертить многоугольник

Еще один способ вычисления периметра многоугольника — построить фигуру на координатной прямой.

Для этого нужно:

  1. Построить координатные оси.
  2. Нанести на них заданные координаты (длины) сторон. Соединить точки.

Формула для расчета периметра

Далее нужно находить длины всех получившихся сторон.

  1. Размеры прямых сторон легко узнавать методом подсчета координатных меток между точками сторон. Записать получившиеся значения рядом со сторонами.
  2. Найти длину наклонных сторон. Это можно сделать по формуле: \(d=\sqrt<\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2>\)

В формулу нужно подставить вместо x и y координаты сторон.

3. Найти периметр сложением длин всех сторон по формуле для неправильного многоугольника: P=a+b+c+d. где a,b,c,d. — длины сторон. А если получился правильный: P=a×n, где a — длина стороны, а n — количество сторон фигуры.

Примеры решения задач

Задания приведены разного уровня сложности. Расположены по принципу «от простого к сложному».

Во всех задачах нужно найти периметр фигур. Этот вопрос дублироваться в каждом примере ниже не будет.

Пример 1

Дан треугольник ABC. AB=28см, BC=51см, AC=46см.

Пример 2

В прямоугольнике ABCD длина синей стороны 12 см, а красной 18 см.

Пример 3

Дан квадрат со стороной 12 см.

Мы знаем, что все стороны квадрата одинаковые. Их всего 4. Значит, P=12×4=48см.

Пример 4

Дана фигура (данные на рисунке).

На рисунке мы видим восьмиугольник. У него шесть сторон по 10 см и две стороны по 8 см. Значит, P=10×6+8×2=60+16+76см.

Источник

Как найти периметр многоугольника

В создании этой статьи участвовала наша опытная команда редакторов и исследователей, которые проверили ее на точность и полноту.

Команда контент-менеджеров wikiHow тщательно следит за работой редакторов, чтобы гарантировать соответствие каждой статьи нашим высоким стандартам качества.

Количество источников, использованных в этой статье: 11. Вы найдете их список внизу страницы.

Количество просмотров этой статьи: 175 769.

Многоугольник — это двумерная фигура, которая ограничена замкнутой ломаной линией (без самопересечений). Существуют правильные многоугольники, все стороны которых равны, и неправильные многоугольники, длины сторон которых различны. Процессы вычисления периметров правильного и неправильного многоугольников немного различаются, но они просты, если знать, что делать. Также периметры правильных и неправильных многоугольников можно найти, если фигуры построить на плоскости координат. Периметр правильного многоугольника можно вычислить по формуле: периметр = количество сторон x длина любой стороны.

Если длины всех сторон не даны, обратите внимание на форму многоугольника, чтобы попытаться определить их. Например, если дан квадрат с одной известной стороной, остальные стороны будут той же длины, потому что стороны квадрата равны.

Источник

Формула расчета периметра многоугольника

Что такое периметр многоугольника

Периметр многоугольника в геометрии — это результат сложения длин всех его сторон.

Свойства многоугольника

  1. Все стороны прямые.
  2. Стороны не пересекаются (кроме звездчатых).
  3. Двумерная фигура.
  4. Сумма внешних углов всегда равна 360º.
  5. Сумма внутренних углов равна \(\frac2\) (для правильных фигур).

Как вычислить периметр правильного многоугольника

Свойства правильного многоугольника

  1. Все стороны равны.
  2. Все углы равны.
  3. Центр равно удален ото всех вершин и сторон.
  4. Сумма всех углов равна 180º×(n−2).
  5. Все внешние углы при сложении их градусных мер дадут 360º.
  6. Все биссектрисы углов между сторонами равны и пересекают центр фигуры.
  7. Возможно вписать окружность и описать круг. Площадь кольца зависит от длины стороны многоугольника.

Формула

где a — длина стороны, n — количество сторон.

Для неправильного многоугольника

Описание

У неправильного многоугольника все стороны разного размера.

Формула

Его периметр (P) можно рассчитать, сложив все длины его сторон (a, b, c,d и т.д.). Это первый способ.

Второй способ: если есть стороны с одинаковыми длинами, формулу можно сократить, использовав умножение.

Дан прямоугольник со сторонами 4см, 4см, 2см и 2см. Чтобы узнать периметр, можно просто их все сложить, как показано в формуле выше. А можно сделать так: 4×2+2×2, так как стороны попарно равны.

Этот способ подойдет и для фигур с большим количеством сторон, некоторые из которых равны.

Дан восьмиугольник со сторонами 5см, 5см, 3см, 3см, 3см, 2см и 1см. Периметр можно высчитать сложением, а можно считать так: 5×2+3×3+2+1.

По заданным координатам

Как начертить многоугольник

Еще один способ вычисления периметра многоугольника — построить фигуру на координатной прямой.

Для этого нужно:

  1. Построить координатные оси.
  2. Нанести на них заданные координаты (длины) сторон. Соединить точки.

Формула для расчета периметра

Далее нужно находить длины всех получившихся сторон.

  1. Размеры прямых сторон легко узнавать методом подсчета координатных меток между точками сторон. Записать получившиеся значения рядом со сторонами.
  2. Найти длину наклонных сторон. Это можно сделать по формуле: \(d=\sqrt<\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2>\)

В формулу нужно подставить вместо x и y координаты сторон.

3. Найти периметр сложением длин всех сторон по формуле для неправильного многоугольника: P=a+b+c+d. где a,b,c,d. — длины сторон. А если получился правильный: P=a×n, где a — длина стороны, а n — количество сторон фигуры.

Примеры решения задач

Задания приведены разного уровня сложности. Расположены по принципу «от простого к сложному».

Во всех задачах нужно найти периметр фигур. Этот вопрос дублироваться в каждом примере ниже не будет.

Пример 1

Дан треугольник ABC. AB=28см, BC=51см, AC=46см.

Пример 2

В прямоугольнике ABCD длина синей стороны 12 см, а красной 18 см.

Пример 3

Дан квадрат со стороной 12 см.

Мы знаем, что все стороны квадрата одинаковые. Их всего 4. Значит, P=12×4=48см.

Пример 4

Дана фигура (данные на рисунке).

На рисунке мы видим восьмиугольник. У него шесть сторон по 10 см и две стороны по 8 см. Значит, P=10×6+8×2=60+16+76см.

Источник

Как найти периметр фигуры

О чем эта статья:

Определение периметра

Периметром принято называть длину всех сторон многоугольника. Какой буквой обозначается периметр — заглавной латинской P. Под обозначением «P» удобно писать маленькими буквами название фигуры, чтобы не запутаться в задачах по ходу решения.

Если параметры переданы в разных единицах длины, мы не сможем узнать какая площадь фигуры получится. Поэтому для правильного решения необходимо перевести все данные к одной единице измерения.

В чем измеряется периметр

  • квадратный миллиметр (мм 2 );
  • квадратный сантиметр (см 2 );
  • квадратный дециметр (дм 2 );
  • квадратный метр (м 2 );
  • квадратный километр (км 2 );
  • гектар (га).

Формула нахождения периметра

Рассмотрим пять фигур.

Треугольник

Периметр треугольника — это сумма длин трех его сторон.

P = a + b + c, где a, b, c — длина стороны.

Формула измерения периметра для равностороннего треугольника — это произведение длины стороны на три.

P = 3 * a, где a — длина стороны.

Квадрат и ромб

Периметр квадрата — это произведение длины стороны на четыре. Формула ромба выглядит идентично.

P = 4 * a, где a — длина стороны.

Прямоугольник и параллелограмм

Периметр прямоугольника — сумма длины и ширины, умноженная на два. Формула параллелограмма выглядит соответственно.

P = 2 * (a + b), где a — ширина, b — высота.

Записывайтесь на онлайн уроки по математике к лучшим преподавателям! Уроки для учеников с 1 по 11 классы!

Равнобедренная трапеция

Формула для равнобедренной трапеции отличается от прямоугольника тем, что у первого есть две равные стороны.

P = a + b + 2 * c, где a, b — параллельные стороны, c — две длины одинаковых сторон.

Периметр круга или длина окружности — это произведение радиуса на два Пи или произведение диаметра на Пи.

L = d * π = 2 * r * π, где d — диаметр, r — радиус, π — это константа, которая выражает отношение длины окружности к диаметру, она всегда равна 3,14.

Можно выучить все формулы, а можно, запомнив определение о сумме всех сторон, каждый раз проявлять смекалку и вычислять самостоятельно. Давайте потренируемся, как определять периметр фигур!

Решение задач

Площадь прямоугольника равна 80 см 2 , длина составляет 10 см. Чему равен периметр фигуры?

  • Для использования формулы P = 2 * (a + b), нам нужно найти ширину;
  • Так как S = a * b, для поиска одной стороны необходимо разделить площадь на известную сторону: 80 : 10 = 8;
  • Далее подставляем известные переменные в формулу: (10 + 8) * 2 = 36;

Равнобедренный треугольник имеет периметр 40 см, длина его основания составляет 6 см. Какую длину будут иметь две другие стороны?

  • Используя формулу P = a + b + c вычислим сумму двух неизвестных сторон: 40 — 6 = 34;
  • Известно, что равнобедренный треугольник имеет две равные стороны;
  • Далее делим получившуюся сумму на два: 34 : 2 = 17 см;

Ответ: две другие стороны равны 17см.

Круг вписан в квадрат, его сторона равна 20 см. Найти периметр круга.

  • Периметр круга равен длине ограничивающей его окружности. Значит P = L = d * π;
  • Сторона квадрата для круга является диаметром, поэтому P = 20 * 3,14;

Чтобы ребенок еще лучше учился в школе, запишите его на уроки математики. Лето — прекрасное время, чтобы заниматься ей с удовольствием, в комфортном темпе, без контрольных и оценок за четверть, валяясь дома на полу или за городом на травке.

Вместо скучных параграфов ребенка ждут интерактивные упражнения с мгновенной автоматической проверкой. Наши преподаватели понятно объяснят что угодно — от дробей до синусов — и ответят на вопросы, которые бывает неловко задать перед всем классом.

Источник

Как вычислить периметр многоугольника?

Ответ или решение 2

Чтобы ответить на данный вопрос, нам необходимы следующие сведения:

  • Что такое многоугольник?
  • Что такое периметр?
  • Как определить периметр многоугольника?

Многоугольник и его свойства

Многоугольником является геометрическая фигура, внутренность которой ограничена ломаной линией, и содержащая не менее одного угла. Другим определением многоугольника может служить следующее утверждение: многоугольник — это замкнутая линия, которая имеет n точек, соединенных между собой последовательными отрезками.

Самыми распространенными примерами многоугольников могут служить: треугольник, четырехугольник, пятиугольник и так далее.

Основным фактом, о многоугольнике, можно назвать свойство его углов: сумма внутренних углов многоугольника определяется при помощи формулы:

где n — число углов фигуры.

Периметр

Периметром любой фигуры называется величина, которая состоит из суммы длин всех ее сторон. Обозначается периметр буквой «Р».

Периметр многоугольника

Чтобы найти периметр любого многоугольника, необходимо сложить длины всех его сторон.

К примеру, определим периметр пятиугольника ABDCE, в котором:

AB = 5 см; BD = 4 см; DC = 4 см; CE = 5 см; АЕ = 2 см.

Р = AB + BD + DC + CE + АЕ = 5 см + 4 см + 4 см + 5 см + 2 см = 20 см.

Значит, периметр пятиугольника ABDCE равен 20 см.

Источник

Читайте также:  Как измерить сколько прошел за день