Яркостный метод измерения температур

Принцип измерения яркостной температуры

Тепловое излучение нагретых тел может различными способами использоваться для измерения их температуры. Мы рассмотрим только один из этих способов, имеющий наибольшее техническое распространение.

В основу данного метода положено сравнение яркости нагретого тела с яркостью абсолютно черного тела в этом же спектральном интервале. Пусть имеется черное тело, нагретое до некоторой температуры. На фоне этого на-гретого черного тела расположена нить накала специальной пирометрической лампы. Рассмотрим нить и тело через светофильтр, выделяющий из спектров обоих объектов излучение определенной длины волны. Регулируя ток накала нити лампы, мы можем добиться того, что нить перестанет быть видимой, исчезнет на фоне раскаленного черного тела. Найдем значение тока накала нити при этих условиях.

Выполнив эти операции для нескольких значений температуры черного тела, установим определенное соответствие между значениями температуры черного тела и токами накала нити в момент, когда она исчезает на фоне абсолютно черного тела. Значит, мы прокалибровали в шкале температур яркость нити в зависимости от тока накала. После этого можно уже применять нить лампы, в свою очередь, в качестве термометра. Пусть нам надо измерить температуру какого-то нагретого тела. Поместим прокалиброванную нить на фоне этого тела. Изменяя в ней ток накала, добьемся исчезновение нити. Допустим, что это произошло при каком-то токе. Пользуясь калибровочным графиком, мы можем найти соответствующую использованному току температуру абсолютно черного тела, при котором нить раньше исчезала на фоне этого тела. Если то тело, температуру которого мы определяем, излучает как черное тело, то ясно, что его искомая температура уже нами найдена. Если же оно излучает иначе, чем черное тело, то найденное указанным путем значение температуры нуждается в поправке. Мы нашли лишь так называемую яркостную температуру тела. Яркостная температура тела будет всегда ниже его истинной термодинамической температуры. Это связано с тем, что любое тело излучает меньше, чем абсолютно черное тело при той же температуре. Следовательно, произвольное тело, имеющее в данный момент одинаковую яркость с некоторым черным телом, имеет наверняка термодинамическую температуру вше температуры черного тела, то есть выше той яркостной температуры, которая определяется с помощью нити пирометра, прокалиброванной по излучению абсолютно черного тела.

Связь между яркостной температурой и термодинамической температурой тела устанавливается соотношением:

. (21.22)

Величина , зависящая от длины волны и температур, имеет свое значение для каждого материала и определяется в ходе особого опыта. Для окиси никеля = 0,9. Величина C1 – комбинация универсальной постоянной Планка, Больцмана и скорости света: 1.438 см/K, – длина световой волны; — термодинамическая температура тела; — яркостная температура тела, непосредственно измеренная пирометром с исчезающей нитью.

Учитывая, что значение близко к значению , мы можем переписать формулу так:

, (21.23)

где означает всегда положительную поправку к измеренной с помощью пирометра яркостной температуре. То есть .

Устройство и работа пирометра с исчезающей нитью. Пусть необходимо измерить температуру раскаленной пластинки. Эта температура измеряется оптическим пирометром. Определение температуры сводится к сравнению цвета и интенсивности излучения раскаленной пластинки с цветом и интенсивностью проградуированного эталона – нити лампочки. Оптическая и электрическая схема пирометра изображена на рис. 21.10.

Рис. 21.10. Измерение температуры пирометром. 1-накаленная пластинка, 2- объектив (l1), 3- поглощающее стекло, 4- пирометрическая лампа, 5- окуляр (l2), 6- красный светофильтр, 7- диафрагма, 8- показывающий прибор, 9- аккумулятор, 10- реостат.

С помощью линзы l1 (рис. 21.10 (2)) получаем изображение поверхности, температуру которой необходимо измерить, в плоскости нити лампочки. Линза l2 (рис. 21.10 (5)) служит для увеличения полученного изображения и устанавливается по глазу наблюдателя. При пользовании пирометром сравнение яркости происходит в ограниченной области спектра. Для получения монохроматического луча в трубке окуляра помещены светофильтры. При измерении температур в интервале 800 – 12000 С пользуются красным светофильтром ( =6600 А), в интервале температур 1400 – 20000 С вводят поглощающие стекла с помощью винта (рис. 21.10 (3)).

Гальванометр проградуирован в градусах Цельсия. Шкала прибора градуирована по излучению абсолютно черного тела. Если излучаемое тело не является абсолютно черным, то пирометр показывает температуру такого черного тела, яркость которого одинакова с яркостью данного тела. Величина T называется яркостной температурой данного тела. Если a близко к 1, то яркостная и истинная температура тела практически совпадают.

С помощью реостата изменяют силу тока, протекающего через лампочку (источником тока служит аккумулятор, ЭДС которого 2 – 2,4 В), и добиваются того, чтобы верхняя часть нити лампочки исчезла на фоне исследуемого объекта. После этого по показанию гальванометра определяют температуру.

Источник

Оптическая пирометрия. Радиационная, цветовая и яркостная температуры.

Законы теплового излучения используются для измерения температуры раскаленных тел. Измерения температуры сильно нагретых тел (Т > 2000 К) контактными термометрами недостоверны и трудно реализуемы. Методы измерения высоких температур, использующие зависимость спектральной плотности или интегральной энергетической светимости тел от температуры, называются оптической пирометрией, а приборы для измерения температуры, основанные на этих методах, называются пирометрами. В зависимости от того, какой закон теплового излучения абсолютно черного тела используется при измерении температуры нагретых тел, различают радиационную, цветовую и яркостную температуры.

Радиационная температура Тр – это такая температура абсолютно черного тела, при которой его энергетическая светимость равна энергетической светимости исследуемого тела. Поскольку все реальные тела, температура которых измеряется, являются серыми и для них поглощательная способность АТ 4 √АТТ.

Цветовую температуру определяют на основании закона Вина, используя то свойство, что распределение энергии в спектре излучения серого тела такое же, как и в спектре абсолютно черного тела, имеющего ту же температуру. В этом случае излучающее серое тело имеет такой же цвет, как черное тело температуры Тц. Цветовая температура определяется по формуле Тц = b/λmax и совпадает с истинной температурой тела. Для тел, характер излучения которых сильно отличается от излучения абсолютно черного тела (например, обладающих явно выраженными областями селективного поглощения), понятиае цветовой температуры не имеет смысла. Таким способом определяется температура на поверхности Солнца и звезд. Сравнение спектра излучения Солнца и абсолютно черного тела показывает, что их отождествлять можно только довольно приблизительно. При таком приближении получили цветовую температуру Солнца примерно 6500 К.

Яркостная температура Тя – это температура абсолютно черного тела, при которой для определенной длины волны его спектральная плотность энергетической светимости равна спектральной плотности энергетической светимости исследуемого тела. Определение яркостной температуры основано на применении закона Кирхгофа для излучения исследуемого тела. В качестве яркостного пирометра обычно используется пирометр с исчезающей нитью, принцип работы которого основывается на сравнении излучения нагретого тела в определенном спектральном интервале с длиной волны λ с излучением абсолютно черного тела с той же длиной волны. Накал нити пирометра подбирается таким образом, что ее изображение становится неразличимым на фоне поверхности нагретого тела, т.е. нить как бы «исчезает». В этом случае яркости излучения нити и нагретого тела для данной λ совпадают и, следовательно, совпадают их излучательные способности. Используя предварительно проградуированный по абсолютно черному телу миллиамперметр, измеряющий ток нити пирометра, можно определить яркостную температуру. Если исследуемый источник излучения также является черным телом, то найденная температура является его истинной температурой. В противном случае при известных Аλ,Т и λ можно определить истинную температуру исследуемого нагретого тела

T=

Кроме пирометров с исчезающей нитью, существуют и другие пирометры для определения яркостной температуры, а через нее и истинной температуры нагретых тел.

31. Постулаты специальной теории относительности. Преобразования Лоренца.

В основе специальной теории относительности лежат постулаты Эйнштейна, сформулированные им в 1905 году.

1. Принцип относительности: никакие опыты (механические, электрические, оптические и т.), проведенные внутри инерциальной системы отсчета, не дают возможности обнаружить, покоится ли эта система или движется равномерно и прямолинейно; все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой.

2. Принцип инвариантности скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета.

Первый принцип Эйнштейна является обобщением механического принципа на любые физические процессы, утверждает, что физические законы инвариантны по отношению к выбору инерциальной системы отсчета, т.е. протекают одинаково, а уравнения, описывающие эти законы, одинаковы по форме во всех инерциальных системах отсчета.Согласно второму постулату Эйнштейна, постоянство скорости света – фундаментальное свойство природы, которое констатируется как опытный факт.Специальная теория относительности потребовала отказа от привычных представлений о пространстве и времени, принятых в классической механике, поскольку они противоречили принципу постоянства скорости света. Потеряло смысл не только абсолютное пространство, но и абсолютное время.

Постулаты Эйнштейна и теория, построенная на их основе, установили новый взгляд на мир и новые пространственно- временные представления, такие, например, как относительность длин и промежутков времени, относительность одновременности событий. Эти и другие следствия из теории Эйнштейна находят надежное экспериментальное подтверждение.

Преобразования Лоренца.В классической механике используются преобразования Галилея, описывающие переход от одной инерциальной системы отсчета к другой (формулы записаны для случая, когда система К’движется относительно К со скоростью v вдоль оси ОХ):

К → К’ К’ → К

x’ = x – vt x = x’ + vt

y’ = y y = y’ (1) z’ = z z = z’

В 1904 г., еще до появления теории относительности, Лоренцем были предложены преобразования, относительно которых уравнения Максвелла инвариантны. Преобразования Лоренца имеют вид

К → К’ К’ → К

x’ = (x – vt)/√1 – β 2 x = (x’ + vt’)/√ 1 – β 2

t’ = (t – vx/C 2 )/ √ 1 – β 2 t = t’ + vx’ /C 2 )/ √ 1 – β 2 ,

Эйнштейн показал, что в теории относительности классические преобразования Галилея заменяются преобразованиями Лоренца, удовлетворяющими постулатам Эйнштейна.

Из сравнения приведенных уравнений вытекает, что они симметричны и отличаются лишь знаком при v, что очевидно. Из преобразований Лоренца вытекает также, что 1) при малых скоростях, т.е. при β С выражения (2) для х, t, x’, t’ теряют физический смысл (становятся мнимыми). Это находится в соответствии с тем, что движение со скоростью, большей скорости распространения света в вакууме, невозможно.

Из преобразований Лоренца следует очень важный вывод о том, что 1)как расстояние, так и промежуток времени между двумя событиями меняются при переходе от одной инерциальной системы к другой, в то время как в рамках преобразований Галилея эти величины считаются абсолютными, не изменяющимися при переходе от системы к системе. Кроме того, 2) как пространственные, так и временные преобразования (2) не являются независимыми, поскольку в закон преобразования координат входит время, а в закон преобразования времени – пространственные координаты, т.е. устанавливается взаимосвязь пространства и времени. Таким образом, теория Эйнштейна оперирует не с трехмерным пространством, к которому присоединяется понятие времени, а рассматривает неразрывно связанные пространственные и временные координаты, образующие четырехмерное пространство-время.

32. Следствия из преобразований Лоренца: одновременность событий в разных системах отсчета; длительность событий в разных системах отсчета; длина тел в разных системах отсчета.

1.Одновременность событий в разных системах отсчета. Пусть в системе К в точках с координатами х1 и х2 в моменты времени t1 и t2 происходят два события. В системе К’им соответствуюткоординаты х1‘ и х’2 и моменты времени t’1 и t’2. Если события в системе К происходят в одной точке (х1 = х2) и являются одновременными(t1 = t2), то согласно преобразованиям Лоренца (2),

т.е. эти события являются одновременными и пространственно совпадающими для любой инерциальной системы отсчета.

Если события в системе К пространственно разобщены (х1 ≠ х2),но одновременны(t1 = t2),то в системе К’,согласно преобразованиям Лоренца

t’1 = (t – vx1 /C 2 )/ √ 1 – β 2 , t’2 = (t’ – vx2 /C 2 )/ √ 1 – β 2 , (3)

Таким образом, в системе К’ эти события, оставаясь пространственно разобщенными, оказываются и неодновременными. В одних системах отсчета первое событие может предшествовать второму, в то время как в других системах отсчета, наоборот, второе событие предшествует первому.

Источник

Статьи

Что такое пирометрия?! Методы пирометрии. Классификация пирометров.

Мы все привыкли к измерению температуры различных тел контактным способом – при помощи термометров. Обычный ртутный термометр находится в аптечке каждой семьи, термометры расширения (кондуктометрический термометр), активно применяются в промышленности. Однако, сегодня, мы расскажем о принципиально «новом», доселе многим неизвестном, и ещё пока редком методе бесконтактного измерения температуры различных тел.

Возможно, регулярные читатели наших статей скажут, что мы уже писали про тепловизоры, и даже не один раз. Однако, нам есть, что Вам ответить: тепловизоры – это дорогие профессиональные приборы, с огромным функционалом. Зачастую, иметь тепловизор на вооружении, у небольших фирм и обычных пользователей, попросту, нет финансовой возможности и острой необходимости.

Тогда, для профессионалов, которые каждый день сталкиваются с необходимостью измерения температуры различных тел и сред, идеальным решением станет пирометр.

Пирометр – это прибор, который предназначается для измерения температуры практически любого тела бесконтактным методом на расстоянии (чаще всего до трех метров).

Пирометр Bosch PTD-1

Соответственно, пирометрия – это совокупность, или сумма способов и методов получения информации о температуре нагретых тел на расстоянии.

В основе работы пирометра лежит принцип восприятия электромагнитных лучей (энергии), излучаемых любым материальным телом, причем, интенсивность и спектр излучения этой энергии имеет прямую зависимость от температуры этого материального тела.

Кстати, вы заметили, что в начале статьи, мы поместили слово «новый» (метод) в кавычки?! Всё дело в том, что первый пирометр был изобретен ещё в 1731 году Питером ван Мушенбруком – голландским ученым, который изготовил пирометр для проведения своих опытов по тепловому расширению твердых тел. Это был далеко не тот пирометр, который вы можете найти в нашем каталоге, однако, сам факт построения такого прибора – открытие.

Сам термин «пирометрия» — появился ещё в начале 20 века, однако толчок к развитию, пирометрия получила только в 60-х годах прошлого столетия. Именно в то время были проведены опыты и сделаны открытия, которые и позволили производить портативные пирометры с высокими потребительскими характеристиками в промышленных масштабах. Первый переносной пирометр был разработан в недрах компании Wahl в 1967 году. С тех пор, пирометры совершенствуются, и сегодня, благодаря современным принципам построения параллелей сравнения, когда температура тела измеряется на основе полученных данных с инфракрасного приемника, границы, в которых происходит измерение температур твердых и жидких тел, существенно расширились.

Стационарный оптический пирометр для промышленного применения Raytek

Вообще, основных методов в пирометрии всего два:

Конечно, с момента их появления, технологии шагнули далеко вперед, поэтому и сами приборы – пирометры усовершенствовались, усложнились, стали более точными, однако, суть методов осталась неизменной. Рассмотрим оба метода более подробно.

1. Радиационный метод пирометрии – основан на зависимости яркости и интенсивности энергетического излучения от температуры материального тела в некотором ограниченном волновом диапазоне – обычно, в инфракрасном. Именно поэтому, приборы использующие такой метод называются инфракрасными пирометрами (или инфракрасными радиометрами или термометрами).

Пирометр инфракрасный TESTO 830-T1

Принцип действия инфракрасного (ИР) пирометра достаточно прост: поскольку существует пропорциональная зависимость между яркостью излучения предмета и его температурой, то измерив яркость и пересчитав её, можно получить достоверное значение температуры. Т.е. основым и главным элементом пирометра, работающего радиационным методом, является специальный датчик, который преобразует яркость тепловой энергии ИР-диапазона в электрический сигнал. Здесь яркость теплового луча фиксируется оптической системой, обрабатывается датчиком. Электрический сигнал с датчика поступает в блок обработки информации, после чего, результат измерения выводится на дисплей.

2. Оптический метод пирометрии – основан на зависимости спектра излучения от температуры минимум в двух диапазонах: диапазоне инфракрасного излучения и диапазоне видимого спектра. Т.е. для данного метода, использован принцип зависимости цвета излучения от температуры объекта.

Например, тела, нагретые до температуры 700-800 °С – обладают темно-оранжевым свечением. Для тел, температура которых составляет около 1000 градусов Цельсия, характерен ярко-оранжевый цвет излучения. Тела, температурой в 2000 °С – испускают ярко-желтое свечение, а температурой 2500 °С – почти белое.

Оптический пирометр с выносным датчиком Raytek

Существуют два основных типа оптических пирометров:

Яркостный пирометр – прибор, который способен определять температуру тела, при помощи визуального сравнения излучения пердмета с излучением эталонной нити. Т.е. оператор, смотрит в окуляр на измеряемый объект, регулируя при этом величину излучения нити путем пропускания через эту нить электрического тока. Нить в окуляре должна быть совмещена с изображением объекта. Необходимо подобрать такое значение электрического тока, при котором цвет излучения нити совпадёт с цветом объекта и как-бы «растворится» в нём. По такому значению тока и определяют температуру нагретого тела. Яркостные пирометры, зачастую называют пирометрами с исчезающей нитью.

Цветовой пирометр (по другому — пирометр спектрального отношения или мультиспектральный пирометр) – прибор, который сравнивает энергетические яркости объекта в разных областях спектра. Т.е. в пирометре этого типа используется несколько датчиков (минимум два), которые и измеряют яркость свечения объекта в двух и более частях спектра, после чего, оценивается их соотношение. Мультиспектральные пирометры обладают максимальной точностью в определении температуры объекта, именно поэтому, на сегодняшний день, профессионалы выбирают именно эти оптические пирометры.

Отечественный пирометр спектрального отношения ДПР-1 «СОВА»

В начале 20 века, яркостные пирометры были распространены повсеместно, однако, начиная с середины 60-х годов, ситуация начала меняться. Были выпущены компактные, точные и удобные инфракрасные радиационные пирометры, которые постепенно вытеснили яркостные пирометры с рынка. Сегодня, практически все портативные пирометры – это приборы, работающие по радиационному методу. Это связано в первую очередь с тем, что они стоят дешевле оптических, проще и удобнее в применении, и могут обеспечить достаточно высокую точность измерения. Однако, оптические пирометры, и в частности пирометры спектрально отношения, обладают своими достоинствами.

Рассмотрим достоинства и недостатки приборов различного типа более подробно.

1) Достоинства и недостатки инфракрасных пирометров.

Основным достоинством радиационного инфракрасного пирометра является сравнительно простая конструкция, вследствие чего, такой пирометр имеет невысокую стоимость, но высокую надежность и малые размеры. Благодаря использованию только одного приёмника, преобразователя и усилителя (в отличие от оптического пирометра, у которого таких комплектов минимум два), радиационный пирометр ломается реже и стоит дешевле.

Пирометр инфракрасный Condtrol IR-T1

Другим преимуществом инфракрасного пирометра является хорошая разрешающая способность (выше, чем у любого оптического пирометра идентичной ценовой категории). Радиационные пирометры прекрасно измеряют температуру тел, нагретых до 300-400°С и выше. К тому же, приспособлены для работы в необычных условиях и узких спектральных диапазонах, например, при проведении измерения через открытый огонь.

Эксклюзивным преимуществом радиационного пирометра является способность измерения низких температур – до -50°С (пирометры другого типа не способны на это).

Именно эти преимущества и обусловили широкое распространение пирометров этого типа.

Существенным недостатком инфракрасных пирометров является зависимость конечного результата измерения от излучательной способности предмета измерения. Что это означает? Возьмем две металлические емкости – одну абсолютно новую (светлую и блестящую), а вторую – сильно окисленную (матовую и темную). Нальем в обе емкости воду и доведем до температуры кипения (100°С), после чего, проведем измерение инфракрасным пирометром. Значение температуры по пирометру, для окисленной емкости будет соответствовать действительности – примерно 95°С, а для новой – нет (будет ниже 50°С). Это можно объяснить тем, что, из-за не одинаковой излучательной способности, при прочих равных условиях и идентичной температуре, разные объекты будут излучать разное количество световой энергии.

На величину излучательной способности, также, оказывает влияние физическое состояние объекта (газ, жидкость или твердое тело), фактура его поверхности (матовая или гладкая), наличие защитных покрытий или пленок, ржавчины, накипи и других естественных образований. Считается, что излучательная способность абсолютно черного объекта равняется единице (1), а зеркала – нулю (0). На практике же коэффициент излучающей способности колеблется от 0,02 до 0,99.

Погрешность, вызванную излучательной способностью, можно компенсирвоать благодаря специальным регуляторам, которые ставятся на современные приборы. Такой регулятор позволяет подстроить пирометр под свойства конкретного исследуемого тела. Регулятор помогает скорректирвоать результаты измерений и добиться высочайшей точности при измерении температуры практически любого объекта.

Регулятор позволяет добавить коэффициент для увеличения точности измерений. Таблица коэффициентов излучения для различных материалов в алфавитном порядке представлена ниже.

Алюминий грубой обработки

Алюминий сильно окисленный

Платина, полируемая пластина

Поверхность, обработанная прессованием углеродом

Полость черного тела

Глинозем, обработка пламенем

Свинец чистый неокисленный

Слой металла, нанесенный на медь гальваническим способом

Железо, грубый слиток

Сталь нержавеющая полированная

Железо, пластина покрытая красной ржавчиной

Сталь нержавеющая 301

Железо, темно-серая поверхность

Каучук, твердая глянцевая пластина

Углерод, не окисленный

Кирпич, огнеупорная глина

Латунь окисленная при 600 o C

Черная краска силиконовая

Черная краска эмаль

Черная краска эпоксидная

Черная оптическая диафрагма

Медная необработанная пластина

Чистое золото высокой полировки

Медно-никелевый сплав полированный

Чугун после плавки

Медь нагретая и покрытая толстым окисным слоем

Чугун, после плавки и тепловой обработки

Но это всё для стандартных материалов. А что же делать, когда необходимо измерить температуру материалов, не приведенных в таблице? Например, если степень окисления старой металлической емкости может различаться, то и коэффициент может быть различным. В таких случаях, необходимо пользоваться специальными таблицами или методиками определения излучательной способности, которые должны идти в комплекте с прибором.

Вторым недостатком инфракрасных пирометров (да-да, мы всё ещё говорим про недостатки) является точность, которая напрямую зависит от расстояния от прибора до объекта измерения. Именно поэтому, специалисты советуют для измерения температуры раскаленных или труднодоступных объектов выбирать пирометры обладающие высоким оптическим разрешением. Ведь, именно благодаря этому параметру, определяется расстояние до объекта, на котором оператор может находиться, не искажая точность измерений.

2) Достоинства и недостатки оптических мультиспектральных пирометров:

Пирометры спектрального отношения, как мы уже говорили, измеряют температуру объекта, путем вычисления значения отношения сигналов с двух и более приемников, работающих в разном диапазоне волн. В теории, такой метод должен был исключить основные проблемы, которые присущи инфракрасным пирометрам. Ведь зависимость качества сигнала от расстояния для обоих датчиков абсолютно одинакова, и поэтому не сказывается на их отношении. Таким образом, точность прибора не зависит ни от расстояния до объекта, ни от его излучательной способности. Но это в теории, а на практике, дело обстоит совсем не так. На практике, по опыту проведенных измерений выяснилось, что даже при оптическом методе определения температуры, излучательная способность, хотя и косвенно, но оказывает влияние на результаты измерений, тем самым приводя к существенным погрешностям (до 10%). Если сложить сюда и другие недостатки оптических пирометров: низкая надежность, высокая стоимость и др., то становится понятно, почему инфракрасные радиационные приборы пользуются большим спросом.

Однако, благодаря современным цифровым технологиям, появились приборы, обладающие особыми алгоритмами расчета корректирующего сигнала для оптических пирометров. В таких «улучшенных» пирометрах погрешность составляет всего 1% для температур от 600 до 2400°С, что очень хорошо. Стоимость же таких приборов в разы больше чем обычных приборов без коррекции.

Пирометр цифровой мультиспектральный Raytek Raynger-3i

Таким образом, современный оптический пирометр: наиболее точный, но, в то же время, более дорогой и менее удобный.

Помимо классификации по принципу действия, пирометры можно разделить по следующим признакам:

1. В зависимости от температурного диапазона:

— Высокотемпературные – для сильно нагретых объектов.

— Низкотемпературные – для объектов даже с минусовой температурой

2. В зависимости от исполнения

— Переносные – в основном это радиационные пирометры,

— Стационарные – используются в промышленности для непрерывного контроля производственного процесса.

3. По способу визуализации результатов измерения

— Текстово-цифровые – температура показывается в градусах.

— Графические – на картинке выделяются различными цветами области высоких, средних и низких температур. Объект представлен в спектральном разложении. Приборы такого типа называют тепловизорами.

В качестве заключения, необходимо упомянуть о том, что пирометр – это высокоточный измерительный прибор, который предназначен для бесконтактного измерения температуры. И хотя пирометры не ли шены недостатков, но они помогают специалистам в их ежедневной работе. Наибольшее распространение инфракрасные пирометры получили неслучайно. Они используются в промышленности и в быту, они доступны по деньгам, надежны, просты в эксплуатации и способны обеспечить более чем приемлемую точность при замерах температуры.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector