Меню

Единица измерения длины звуковой волны



Звуковые волны, виды, длина волны и скорость звука.

Сегодня мы продолжим изучать звук и разберёмся что такое звуковые волны, какие бывают их виды, что такое длина волны и какая скорость у звука.

Звуковые волны

Звук создаётся с помощью механических колебаний голосового аппарата или различных элементов музыкальных инструментов. Подробнее о механических колебаниях мы говорили вот в этой статье ( читать ).

Распространяется звук посредством передачи энергии механических колебаний частицам среды в виде звуковых волн. Как это происходит написано вот здесь .

Виды звуковых волн

Звуковые волны делятся на продольные. Это когда направление движения частиц совпадает с направлением распространения энергии механических колебаний в упругой среде. И на поперечные. Это когда направление движения частиц перпендикулярно распространению возмущения.

В газах (к ним относится и воздух) распространяются только продольные волны, в твердых могут быть оба вида.

Скорость звуковой волны

Если сделать движение рукой туда и обратно, то с воздухом ничего особенного не произойдет, кроме того, что его частицы сместятся в пространстве. Если бы мы могли махать рукой сто раз в секунду, то произошло бы совсем другое. У воздуха не было бы времени освобождать путь движущейся руки. И он стал бы сжиматься, когда рука движется вперёд и разрежаться, когда она возвращалась.

Благодаря упругости в процессе таких колебаний при движении поверхности тела вперёд каждая частица воздуха толкает находящуюся впереди частицу, та следующую и т. д. При обратном движении поверхности тела сжатие сменяется разряжением, за которым опять следует сжатие.

Эти волны сжатия и разряжения передаются от одного участка к другому с определённой скоростью.

В упругой среде они распространяются со скоростью, зависящей от материала среды и от того, насколько близко расположены друг к другу его атомы и молекулы.

В газах плотность не влияет на скорость. Например, в воздухе важным параметром является его температура. Но об этом ещё поговорим.

Отметим, что скорость звука в воздухе абсолютно не зависит от числа колебаний поверхности тела. Напомним, что число колебаний в секунду (точнее один период) называется Герц (Гц). Также скорость смещения частиц и скорость звуковой волны это совершенно разные величины. Скорость частиц зависит от частоты и амплитуды звукового сигнала. А скорость звука только от свойств среды (температура, плотность, упругость).

Формулы

Зависимость скорости звуковой волны от свойств среды, где она распространяется, рассматривается по формуле:

E — коэффициент упругости среды, определяет силу взаимодействия частиц друг с другом; p = m/V (кг/м³) — плотность среды. У твердых тел упругость больше, чем у жидкости и газа. Поэтому соотношение скоростей звука будет таким:

Скорость звука в газах может быть представлена следующей формулой:

γ = cp/сv — отношение удельной теплоёмкости при постоянном давлении к удельной теплоёмкости при постоянном объёме.

P атм — атмосферное давление, которое связано с температурой газообразной среды.

Главное, что нужно понять из этой формулы, это то, что в газообразной среде скорость звука сильно зависит от температуры (чем горячее, тем быстрее двигаются молекулы, имеет большую энергию и быстрее передают механическое возбуждение)

В воздухе скорость звука (при нормальном атмосферном давлении) приближенно можно представить так:

C = (331 + 0,6 T °) м/c

T ° — градусы Цельсия.

Например, при температуре 20 °C скорость звука равна 343 м/с

C = (331 + 0,6 × 20) = 343

При 0 °C, скорость звука равна 331 м/с, при — 20 °C = 319 м/с.

Такая зависимость особенно важна для духовых музыкальных инструментов при их настройке. Поэтому их нужно прогревать перед исполнением.

Ещё важно, что связь звуковых колебаний с размерами источника звука, которые не изменяются с температурой, не означают постоянства частоты, так как последняя зависит от скорости звука, растущей с повышением температуры. Струнные в этом случае можно подстроить. А вот вибрирующий столб во многих духовых инструментах подстроить нельзя. Ведь колебания возникают в воздушной полости инструмента, а их частота зависит от размеров полости и скорости истечения воздушных масс из неё. Например, у флейты высота звука увеличивается на полтона при повышении температуры на 15 °C.

Если переводить в км/ч, то 343 м/с, это 1235 км/ч. Это довольно быстро для человека или автомобиля. Но мало по сравнению со скоростью света 300 000 км/c.

Заканчивая о скорости звука, отметим, что скорость звука не зависит от частоты. Так как в воздушной среде отсутствует дисперсия — зависимость скорости распространения звука от частоты. Если бы в воздухе была бы дисперсия, мы не смогли бы слушать музыку в зале: все звуки, исполненные одновременно, приходили бы к слушателю в разное время.

Длина волны

Когда происходит одно сжатие и одно разрежение плотности среды происходит один период колебания. Поэтому расстояние между двумя сжатиями или двумя разряжениями звуковой волны и равно длине волны.

Если мы знаем частоту звука (количество волн в секунду), то мы можем вычислить расстояние между соседними соответствующими точками распространяющихся волн.

Допустим звук с известной нам скоростью 340 м/с имеет частоту 340 Гц. При этих параметрах длина волны будет равна 1 метру.

Формула для расчёта длины волны

А формула вычислений такая:

λ — длина волны, c — скорость, f — частота.

Конечно, эти расчеты являются приближенными. Так как мы уже знаем, что скорость звука в воздухе зависит от температуры, давления. Но на практике, чтобы рассчитать толщину звукопоглотителя для ослабления звука определённого диапазона частот или для оценки размера мембраны микрофона, этого вполне достаточно.

Музыкальные ноты имеет определённые частоты, значит и определённую длину волн. Например, у фортепиано верхняя октава создаёт звуки в районе 2 см, а нижняя около 10 м. Но дека фортепиано не очень эффективно генерирует эти звуки, в отличии, например, от органа. Почему?

Вернёмся к нашей руке. Допустим мы всё-таки наделены сверх способностями и можем махать рукой 100 раз в секунду = 100 Гц. Этот источник звука был бы всё равно несовершенен, так как часть воздуха огибала его сбоку. Чтобы этого не было, источник для таких низких частот должен быть гораздо большего размера (например, дека фортепиано более эффективна, поскольку потери на её краях невелики, а органа ещё эффективнее). Если же вибратор колеблется очень быстро воздух не успевает растекаться по сторонам. Поэтому для очень высоких частот даже малые поверхности могут быть эффективными излучателями звука.

Спасибо, что читаете New Style Sound. Подписывайтесь и делитесь с друзьями.

Источник

Длина волны — формулы, свойства и расчеты

Длина волны — это расстояние между двумя последовательными пиками (гребнями) или впадинами. Самое высокое положение волны называется пиком. Самое нижнее положение волны называется впадиной.

Цикл — это полное колебание, например, кривая между двумя гребнями или двумя впадинами. Максимальное расстояние волны от равновесного положения называется амплитудой.

На рисунке показаны основные параметры волны, используемые в физике:

Определение и формула длины волн

Волна — это возмущение, распространяющееся от точки, в которой она возникла, в окружающую среду. Такое возмущение переносит энергию без чистого переноса вещества.

Длина представляет собой фактическое расстояние, пройденное волной, которое не всегда совпадает с расстоянием среды, или частиц, в которых распространяется волна. Ее также определяют как пространственный период волнового процесса.

Греческая буква «λ» (лямбда) в физике используется для обозначения длины в уравнениях. Она обратно пропорциональна частоте волны.

Период Т — время завершения полного колебания, единица измерения секунды (с).

Длинная волна соответствует низкой частоте, а короткая — высокой. Длина измеряется в метрах. Количество волн, излучаемых в каждую секунду, называется частотой и обратно пропорционально периоду.

У различных длин разная скорость распространения. Например, скорость света в воде равна 3/4 от скорости в вакууме.

Пространственный период волны — это расстояние, которое точка с постоянной фазой «пролетает» за интервал времени, соответствующий периоду колебаний.

Частота f — количество полных колебаний в единицу времени. Измеряется в Герцах (Гц).

При одном полном колебании в секунду f = 1 Гц; при 1000 колебаний в секунду f = 1 килогерц (кГц); 1 млн. колебаний в секунду f = 1 мегагерц (1 МГц).

Зная, что скорость света в вакууме с — 300 000 км/с, или 300 000 000 м/с, то для перевода длины волны в частоту нужно 3 х 10 8 м/с поделить на длину в метрах.

Единицы измерения длины волны λ — нанометры и ангстремы, где нанометр является миллиардной частью метра (1 м = 109 нм) и ангстрем является десятимиллиардной частью метра (1 м = 1010 А), то есть нанометр эквивалентен 10 ангстрем (1 нм = 10 А).

Свет, который исходит от Солнца, является электромагнитным излучением, которое движется со скоростью 300 000 км/с, но длина не одинакова для любого фотона, а колеблется между 400 нм и 700 нм. Длина световой волны влияет на цвет.

Белый свет разлагается на спектр различных цветных полос, каждая из которых определяется своей длиной волны. Таким образом, светом с наименьшей длиной является фиолетовый, который составляет около 400 нм, а светом с наибольшей длиной — красный, который составляет около 700 нм.

Таблица показывает длину волны в зависимости от цвета:

Излучения с длиной меньше фиолетового называются ультрафиолетовым излучением, рентгеновским и гамма-лучами в порядке уменьшения. Излучения больше красного называются инфракрасными, микроволнами и радиоволнами, в порядке возрастания.

Предельная дальность связи зависит от длины. Размеры антенны часто превышают рабочую длину радиоэлектронного средства.

Рисунок показывает длину волн и частоту (нм), исходящих от различных источников:

Примеры расчета длины волны для звуковых, электромагнитных и радиоволн

Задача №1

Скорость звука в воде 1450 м/с. На каком расстоянии находятся ближайшие точки, совершающие колебания в противоположных фазах, если частота колебаний равна 725 Гц?

Задача №2

Мимо неподвижного наблюдателя, стоящего на берегу озера, за 6 с. прошло 4 гребня волны. Расстояние между первым и третьим гребнями равно 12 м. Определить период колебания частиц волны, скорость распространения и длину волны.

Задача №3

Голосовые связки певца, поющего тенором (высоким мужским голосом), колеблются с частотой от 130 до 520 Гц. Определите максимальную и минимальную длину излучаемой звуковой волны в воздухе. Скорость звука в воздухе 330 м/с.

Читайте также:  Рефрактометр для измерения алкоголя

Источник

Длина звуковой волны

Звуковые волны в разных средах

В большинстве случаев мы воспринимаем звук, распространяющийся в воздухе. Воздушная звуковая волна – это ряд распространяющихся в воздухе колебаний плотности – сжатий и разрежений. То есть, звук представляет собой продольную механическую волну.

Рис. 1. Звук как ряд сжатий и разрежений.

Для распространения механической волны необходимо наличие упругой среды, которой является не только воздух. А, значит, звук может распространяться и в других средах – в жидкостях и кристаллах. Однако, упругость жидкостей и кристаллов гораздо выше, чем упругость воздуха, поэтому колебания точек в таких средах среде происходит с гораздо большими внутренними напряжениями. Это приводит к тому, что колебания распространяются намного быстрее.

Длина звуковой волны

Если скорость распространения звука в различных средах различна, а его частота фиксирована, то расстояние между соседними сжатиями или разрежениями будет также различно.

Это расстояние и называется длиной звуковой волны. Поскольку частота и период связаны простой обратной зависимостью, формулу длины звуковой волны можно получить как на основе частоты колебаний, так и на основе периода:

  • $\lambda$ – длина волны (м);
  • $v$ – скорость звука в среде (м/с);
  • $T$ – период звуковых колебаний (с);
  • $\nu$ – частота звуковых колебаний (Гц).

Из формулы можно видеть, что длина волны прямо пропорциональна скорости звука в среде. При одной и той же частоте длина волны будет наименьшей в газах при невысоких давлениях, будет больше в жидкостях, и самой большой будет в кристаллах. Например, для частоты 500гц:

Среда

v (м/с)

λ(м)

Рис. 2. Длина звуковой волны.

Роль длины звуковой волны

Звуковые волны способны отражаться от границ сред. Это свойство используется в ряде случаев и человеком и Природой. Если в среде есть какие-то неоднородности – то звуковые волны отражаются от них, и по картине отражения можно делать выводы о расположении неоднородностей. Такой процесс называется эхолокацией. Природное использование эхолокации – поведение летучих мышей и дельфинов. Человек использует эхолокацию в целях дефектоскопии промышленных установок, а также в медицинской практике, для исследования внутренних органов.

Рис. 3. Эхолокация в природе и технике.

Однако, для отражения волны граница между средами должна иметь размеры больше ее длины. Если длина волны будет больше, волна будет просто огибать неоднородность, не отражаясь. Отсюда следует важный вывод, что для обнаружения небольших неоднородностей длина звуковой волны должна быть как можно меньше.

Именно поэтому и человек и Природа для эхолокации использует ультразвук. Малая длина волны ультразвука способствует обнаружению самых мелких неоднородностей.

Что мы узнали?

Звук представляет собой распространяющиеся в среде сжатия и расширения. Длина звуковой волны – это расстояние между ближайшими сжатиями или расширениями. В разных средах длина волны различна, короткие ультразвуковые волны удобны для эхолокации.

Источник

Звуковые волны — свойства, характеристики и примеры применения в физике

В общем случае звуковые волны физика рассматривает как распространение возмущений давления в упругих средах. Человеческое ухо улавливает аномалию, воспринимая звук.

Изучающая свойства явления наука называется акустикой. От греческого ἀκούω (слышать). Имеются в виду небольшие изменения параметров в отличие от физики ударных волн.

Звуковые волны

Процесс распространения связан с колебательным механическим движением частиц. Достаточно каким-либо образом создать скачок давления, и частицы «толкнут» соседние.

Уравнение звуковой волны в газе (гармоничные колебания) будет выглядеть так:

p – начальное давление (Па);

ω – круговая частота (Гц);

k – волновое число.

Формулы связи длины звуковой волны, скорости, иные характеристики:

v – скорость волны (м/с);

λ – длина волны (м);

Источник звука

Под источником звука понимают вещь, спровоцировавшую волну. Например, динамик или музыкальный инструмент.

В громкоговорителе для извлечения шума используется подвижная мембрана. В духовых инструментах – движение воздуха по внутренним ходам различной геометрии.

Из струнных звук извлекают при помощи трения смычка или при помощи щипков, ударов. Человек выдает речь, вокал, при помощи голосовых связок.

Скорость звуковой волны

Скорость распространения акустической волны является важной физической характеристикой среды или материала, поскольку со скоростью звука передаются любые возмущения.

Величина зависит от упругих свойств среды. Например, от давления, температуры. Для атмосферного воздуха важна влажность.

В общем случае определяется отношением модуля всестороннего сжатия и номинальной плотностью.

Для практических целей замеряется опытным путем. В жидкостях звук распространяется быстрее, чем в газах.

Громкость

Зависит от перемещаемой волной энергии. Замеряют в Вт/м 2 . Но интенсивность принято измерять в децибелах.

Существует масса приложений для компьютеров, смартфонов. Специалисты вооружаются специализированными устройствами.

Бел – десятичный логарифм отношения текущего уровня интенсивности в фоновому, пороговому. Осталось умножить на 10 (поскольку децибел).

Вот примеры уровня шума для разных источников.

Высота и тембр звука

Считается, что человеческое ухо воспринимает с разным успехом частоты диапазона 20…20 000 Гц. Оптимальными для слуха является интервал 1 000…5 000 Гц.

Высота определяется частотой. В связанной с музыкальными инструментами акустике измеряется также в мелах.

В музыкальных колонках в зависимости от частот звук может разделяться на полосы (НЧ, СЧ, ВЧ). На каждый громкоговоритель поступает соответственно отфильтрованный звук.

Рассуждения корректны, если имеем гармоничные колебания (синусоида), определенный тон. Примером такого звучания может служить камертон. Реальные инструменты дают дополнительные гармоники (обертона), образующие тембр.

Так выглядит звук от разных источников на одной ноте.

Звуковые явления

Звук обладает ярко выраженными волновыми свойствами:

1. Интерференция или сложение. В зависимости от условий волны могут взаимно усиливаться или ослабляться.

При проведении крупных концертных мероприятий учитывается возможные «деформации» звука в некоторых участках помещения. Эффект связан с обильным отражением (рефракцией) волн от стен, потолка, пола. Особенно коварно поведение линейных массивов.

Рота бойцов разрушит мост, идя по нему «в ногу». Конструкции не выдерживает наступающего резонанса.

2. Дифракция. Огибание препятствия, если длина волны существенно больше.

3. Замеренная частота источника увеличивается в процессе сближения с последним (эффект Доплера).

Применение звуковых волн

Помимо ценности общения друг с другом, звук дает возможность наслаждаться музыкой и обогащать свое представление об окружающем мире. Кроме слышимого спектра существуют инфра- и ультразвук. Ниже и выше границ слышимости соответственно.

УЗИ (ультразвуковое исследование) позволяет «увидеть» внутренности пациента без скальпеля и небезопасного рентгеновского аппарата. Эхолокатор поставляет морякам информацию о глубинах и рельефе дна. Офицер-гидроакустик обнаружит спрятавшуюся подводную лодку. Характер отражения ультразвука поможет обнаружить скрытый дефект в ответственной детали.

Слабо затухающий в средах инфразвук предупредит о стихийном бедствии. Регистрирующие приборы обнаруживают и локализуют сотрясения почвы и скальных пород. Это важно для изучения и предсказания землетрясений. Таким же образом обнаруживаются запрещенные испытания ядерного оружия. Предупрежден – значит вооружен.

Источник

Длина, скорость и частота звуковой, ифразвуковой и ультразвуковой волн.

Онлайн калькуляторы переводов длины волны в частоту и частоты в длину волны.

Звуковые волны – это механические колебания, которые берут своё начало в источнике звука и далее распространяются в какой-либо среде (в газе, жидкости или твёрдом теле). Достигнув органов слуха человека (или иной особи), они воспринимаются им как звук.
Для распространения звука необходима какая-либо упругая среда. В вакууме звуковые волны распространяться не будут, так как там нечему колебаться. Поэтому ори, не ори в космические дали, всё одно — хрен тебя там кто услышит, тем более, что там никого и нет.

Так же, как и в случае с электромагнитными волнами, соотношение, связывающее длину звуковой волны с частотой колебаний, в общем случае выглядит следующим образом:

λ (м) = V (м/сек) / F (Гц) , где V (м/сек) — это скорость распространения звука в среде.

Частота колебаний звукового сигнала F (Гц) — параметр стабильный и, практически не зависящий от среды распространения.
А вот скорость звука V (м/сек), а соответственно и длина звуковой волны — это величины, которые зависят не только от плотности вещества, но и от его упругости, а в случае с жидкостями и особенно с газами — и от температуры, и атмосферного давления.

Зависимость скорости звуковой волны от свойств упругой среды легко прослеживается по следующей формуле:

V (м/сек) = √ Eупр (паскаль) / ρ (кг/м 3 ) , где Eупр — это модуль объёмной

упругости среды, а ρ — плотность среды.
Модуль упругости, так же как и плотность — это справочные величины, прописанные для конкретных материалов. Для газов эти величины имеют ярко выраженную зависимость от температуры и атмосферного давления. Если вдаваться в подробности, то скорость звука в газах может быть представлена следующей формулой:

V (м/сек) = √ γ*Ратм / ρ , где γ = cp/сv — это отношение удельной теплоёмкости при постоянном давлении к удельной теплоёмкости при постоянном объёме, а Pатм — атмосферное давление, которое связано с температурой газообразной среды.
Поэтому, чтобы никого не грузить и радоваться жизни, приведу приближённую зависимость скорости звука (при нормальном атмосферном давлении) от температуры среды:

V (м/сек) = (331 + 0,6 * T°) , где 331 м/сек — это скорость звука при 0°С,

а T° — температура в градусах Цельсия.

Теперь можно совместить формулы и получить простое соотношение, связывающее длину звуковой волны с частотой колебаний с учётом температуры среды:

λ (м) = (331 + 0,6 * T°) / F (Гц) .

Всё это без лишнего напряга несложно посчитать при помощи калькулятора или деревянных счёт. Ну а для тяжёлых на подъём, приведу пару он-лайн таблиц переводов одного из параметров в другой.
Калькуляторы предполагают, что расчёты длины и частоты звуковой волны производятся для воздушной среды при нормальном атмосферном давлении (760 мм ртутного столба при температуре 0°C).

КАЛЬКУЛЯТОР РАСЧЁТА ДЛИНЫ ЗВУКОВОЙ ВОЛНЫ ПО ЧАСТОТЕ

КАЛЬКУЛЯТОР РАСЧЁТА ЧАСТОТЫ ПО ДЛИНЕ ЗВУКОВОЙ ВОЛНЫ

«Редкая птица со шнобелем дочешет до середины Днепра. А если и дочешет, то гикнется и копыта отбросит. «. Так же и редкое человеческое ухо способно услышать полный диапазон звуковых частот, условно находящийся в пределах 16—20 000 Гц.
Ниже ( 0,001—16Гц ) — инфразвук.
Выше ( 20-100кГц ) — низкочастотный ультразвук,
ещё выше (100кГц-1МГц) — высокочастотный ультразвук.

Источник

Длина волны в физике

Что такое длина волны

Волна — изменение характеристик физического поля или среды, способное удаляться от места возникновения или колебаться внутри ограниченной области пространства.

​Длина волны — расстояние между точками, которое волна проходит за одно колебание.

Если точки отстоят на расстояние \(\lambda\) друг от друга, их смещения из положений равновесия будут одинаковы, и колебания в них будут происходить в одинаковой фазе.

В системе СИ длина волны измеряется в метрах.

Чем меньше длина волны, тем легче сконцентрировать ее энергию в заданном направлении. Поэтому, например, в эхолокации используют ультразвук. Поскольку ультразвуковые волны в воде затухают гораздо слабее, чем в воздухе, эхолокацию особенно широко используют в гидроакустике.

Физические характеристики волны

Два главных параметра волны — частота колебаний f (число полных циклов колебаний в секунду) и длина волны \(\lambda\) — зависят друг от друга.

Зная эти параметры, можно произвести вычисления, чтобы выяснить период повторения колебаний Т и скорость распространения волны v.

Интенсивность волны описывается такими параметрами, как:

  • амплитуда;
  • плотность энергии;
  • плотность потока мощности.

Геометрически волна состоит из гребней и ложбин.

Для продольных волн чаще используют понятия точек максимального сжатия и максимального растяжения.

Для стоячих волн — понятия пучности и узла, характеризующие участки с максимальной и минимальной амплитудой колебаний.

Виды волн, какие бывают

Продольные волны

Продольные волны — волны, при которых частицы вещества колеблются перпендикулярно направлению распространения.

Они возникают при сопротивлении среды изменению ее объема, их причина — деформация сжатия/растяжения (в твердой среде) или уплотнения/разрежения (в газах и жидкостях).

Продольная волна заставляет частицы среды колебаться у своих положений равновесия, и этот процесс перемещается параллельно направлению распространения волны. Частицы сдвигаются строго по одной линии.

Чтобы узнать длину волны, нужно измерить расстояние между ближайшими точками сжатия или растяжения. Продольные волны могут распространяться в любой среде: твердой, жидкой, газообразной. Во время этого процесса непрерывно изменяется давление в каждой точке среды.

В твердых телах продольные волны распространяются быстрее, чем поперечные. Для сравнения: продольная волна движется в стали со скоростью около 5900 м/с, поперечная — примерно 3250 м/с.

Поперечные волны

Поперечные волны — волны, при которых частицы вещества колеблются перпендикулярно направлению распространения.

Они возникают при сдвиге слоев среды относительно друг друга. В поперечной волне колебания элементов происходят в направлениях, перпендикулярных направлению распространения волны. Среда стремится вернуть деформированные частицы на место, при этом на несмещенные частицы рядом со смещенными воздействуют силы упругости и отклоняют их от положения равновесия. Жидкости и газы не сопротивляются изменению формы, поэтому поперечные волны возможны только в твердых средах.

Длина поперечной волны — расстояние между двумя ближайшими ее впадинами или горбами.

И продольные, и поперечные волны относятся к упругим — возникающим только в упругой среде, обладающей свойством после деформации возвращаться к прежней форме.

Стоячие волны

Стоячие волны — волновые процессы в распределенных колебательных системах с устойчивым в пространстве расположением участков с максимальной и минимальной амплитудой.

Самую простую одномерную стоячую волну можно возбудить, запустив колебательный процесс с одного конца стержня или гибкой струны. Добравшись до конца стержня или струны, волна отразится, что вызовет наложение.

Бегущие волны

Бегущие волны — процессы последовательного изменения (с определенным запаздыванием) состояния взаимодействующих тел, когда они друг за другом приходят в движение.

Ее можно запустить, например, в системе из косточек домино, выстроенных строго друг за другом на ровной поверхности. Если осторожно толкнуть первую, она, падая, уронит вторую, та — следующую, и в результате такого последовательного падения по ряду побежит волна.

Формулы длины волны

Длина стоячей и бегущей волны

v здесь — фазовая скорость волны, Т — период колебаний, f — частота, \(\omega\) — круговая частота.

Длина стоячей волны — это расстояние между двумя пучностями или двумя узлами, которое можно рассчитать с помощью формулы:

Длина стоячей волны равна половине длины соответствующей бегущей волны, так как возникает при наложении двух волн, падающей и отраженной, и сумма их амплитуд равна нулю.

Длина электромагнитной волны

Электромагнитная волна — это электрическое и магнитное поля, взаимно превращающиеся друг в друга.

В случае электромагнитных волн колебания совершают векторы электрического и магнитного полей. Механического колебания не происходит, но электромагнитные волны, например, световые, принято относить к поперечным.

Частоты и длины электромагнитных волн изменяются в очень широких пределах: от нескольких колебаний в секунду до \(10^<27>\) , от размеров, сопоставимых с размерами атомов, до миллионов километров в безвоздушном пространстве. Поэтому электромагнитные излучения принято делить на частотные диапазоны в порядке возрастания длины волны, от гамма-лучей к радиоволнам. Границы между выделенными диапазонами условны.
Длина электромагнитной волны обратно пропорциональна частоте и вычисляется через скорость света:

Скорость распространения излучения, она же скорость света, равна:

Длина звуковой волны

Колебания частотой от 16 до 20 000 Гц воспринимаются ухом человека. Колебания источников звуковых волн, например, струн или голосовых связок, создают в среде последовательно сменяющие друг друга сжатия и разрежения.

Когда периодические изменения давления достигают барабанной перепонки, она совершает вынужденные колебания. Эти колебания анализирует по амплитуде и частоте внутреннее ухо, имеющее форму улитки, рецепторы которого настроены на различные звуковые частоты. Затем колебания передаются в мозг по слуховому нерву и воспринимаются как слышимые звуки.

Длину звуковой волны вычисляют по общей формуле:

Расчет длины волны через энергию фотона

Электромагнитное излучение испускается не непрерывно, а отдельными порциями, которые называют квантами или фотонами. Их энергия пропорциональна частоте и высчитывается по формуле:

Где h — постоянная Планка, равная \(6,6\;\times\;10^<-34>\;Дж\times с.\)

Очевидно, что наибольшую энергию несут кванты коротковолнового излучения. За единицу измерения энергии фотонов обычно принимают электронвольт, его обозначение — эВ. Это энергия, которую приобретает свободный электрон, ускоренный электрическим полем с разностью потенциалов в 1 вольт.

1 электронвольт равен \(1,6\;\times\;10^<-19>\;Дж.\)

Кванты видимого излучения обладают энергиями 2–3 эВ и занимают лишь небольшую область исследуемого в астрофизике электромагнитного спектра, который простирается от значений энергии порядка миллионных долей электронвольта для метровых радиоволн до миллионов электронвольт для гамма-излучения.

Так как частота равна скорости распространения излучения, деленной на длину волны, длину волны можно вычислить, зная энергию фотона и частоту.

Примеры решения задач

Найдите длину волны при звучании ноты «ля», если известно, что частота ее колебаний равна 440 Гц, а скорость распространения звука в воздухе — 340 м/с.

Для нахождения периода Т воспользуемся формулой \(Т\;=\frac<\;1\;>f.\)

Подставив известные данные, получим \(\lambda\;=\;\frac<340\;><440>\;=\;0,78\;м.\)

Найдите длину волны, если известно, что ее скорость 8 м/с, а период — 1 час.

1 час = 3600 секунд

Подставив известные данные, получим \(\lambda\;=\;8\;\times\;3600\;=\;28800\;м.\)

Источник

Звуковые волны, виды, длина волны и скорость звука.

Сегодня мы продолжим изучать звук и разберёмся что такое звуковые волны, какие бывают их виды, что такое длина волны и какая скорость у звука.

Звуковые волны

Звук создаётся с помощью механических колебаний голосового аппарата или различных элементов музыкальных инструментов. Подробнее о механических колебаниях мы говорили вот в этой статье ( читать ).

Распространяется звук посредством передачи энергии механических колебаний частицам среды в виде звуковых волн. Как это происходит написано вот здесь .

Виды звуковых волн

Звуковые волны делятся на продольные. Это когда направление движения частиц совпадает с направлением распространения энергии механических колебаний в упругой среде. И на поперечные. Это когда направление движения частиц перпендикулярно распространению возмущения.

В газах (к ним относится и воздух) распространяются только продольные волны, в твердых могут быть оба вида.

Скорость звуковой волны

Если сделать движение рукой туда и обратно, то с воздухом ничего особенного не произойдет, кроме того, что его частицы сместятся в пространстве. Если бы мы могли махать рукой сто раз в секунду, то произошло бы совсем другое. У воздуха не было бы времени освобождать путь движущейся руки. И он стал бы сжиматься, когда рука движется вперёд и разрежаться, когда она возвращалась.

Благодаря упругости в процессе таких колебаний при движении поверхности тела вперёд каждая частица воздуха толкает находящуюся впереди частицу, та следующую и т. д. При обратном движении поверхности тела сжатие сменяется разряжением, за которым опять следует сжатие.

Эти волны сжатия и разряжения передаются от одного участка к другому с определённой скоростью.

В упругой среде они распространяются со скоростью, зависящей от материала среды и от того, насколько близко расположены друг к другу его атомы и молекулы.

В газах плотность не влияет на скорость. Например, в воздухе важным параметром является его температура. Но об этом ещё поговорим.

Отметим, что скорость звука в воздухе абсолютно не зависит от числа колебаний поверхности тела. Напомним, что число колебаний в секунду (точнее один период) называется Герц (Гц). Также скорость смещения частиц и скорость звуковой волны это совершенно разные величины. Скорость частиц зависит от частоты и амплитуды звукового сигнала. А скорость звука только от свойств среды (температура, плотность, упругость).

Формулы

Зависимость скорости звуковой волны от свойств среды, где она распространяется, рассматривается по формуле:

E — коэффициент упругости среды, определяет силу взаимодействия частиц друг с другом; p = m/V (кг/м³) — плотность среды. У твердых тел упругость больше, чем у жидкости и газа. Поэтому соотношение скоростей звука будет таким:

Скорость звука в газах может быть представлена следующей формулой:

γ = cp/сv — отношение удельной теплоёмкости при постоянном давлении к удельной теплоёмкости при постоянном объёме.

P атм — атмосферное давление, которое связано с температурой газообразной среды.

Главное, что нужно понять из этой формулы, это то, что в газообразной среде скорость звука сильно зависит от температуры (чем горячее, тем быстрее двигаются молекулы, имеет большую энергию и быстрее передают механическое возбуждение)

В воздухе скорость звука (при нормальном атмосферном давлении) приближенно можно представить так:

C = (331 + 0,6 T °) м/c

T ° — градусы Цельсия.

Например, при температуре 20 °C скорость звука равна 343 м/с

C = (331 + 0,6 × 20) = 343

При 0 °C, скорость звука равна 331 м/с, при — 20 °C = 319 м/с.

Такая зависимость особенно важна для духовых музыкальных инструментов при их настройке. Поэтому их нужно прогревать перед исполнением.

Ещё важно, что связь звуковых колебаний с размерами источника звука, которые не изменяются с температурой, не означают постоянства частоты, так как последняя зависит от скорости звука, растущей с повышением температуры. Струнные в этом случае можно подстроить. А вот вибрирующий столб во многих духовых инструментах подстроить нельзя. Ведь колебания возникают в воздушной полости инструмента, а их частота зависит от размеров полости и скорости истечения воздушных масс из неё. Например, у флейты высота звука увеличивается на полтона при повышении температуры на 15 °C.

Если переводить в км/ч, то 343 м/с, это 1235 км/ч. Это довольно быстро для человека или автомобиля. Но мало по сравнению со скоростью света 300 000 км/c.

Заканчивая о скорости звука, отметим, что скорость звука не зависит от частоты. Так как в воздушной среде отсутствует дисперсия — зависимость скорости распространения звука от частоты. Если бы в воздухе была бы дисперсия, мы не смогли бы слушать музыку в зале: все звуки, исполненные одновременно, приходили бы к слушателю в разное время.

Длина волны

Когда происходит одно сжатие и одно разрежение плотности среды происходит один период колебания. Поэтому расстояние между двумя сжатиями или двумя разряжениями звуковой волны и равно длине волны.

Если мы знаем частоту звука (количество волн в секунду), то мы можем вычислить расстояние между соседними соответствующими точками распространяющихся волн.

Допустим звук с известной нам скоростью 340 м/с имеет частоту 340 Гц. При этих параметрах длина волны будет равна 1 метру.

Формула для расчёта длины волны

А формула вычислений такая:

λ — длина волны, c — скорость, f — частота.

Конечно, эти расчеты являются приближенными. Так как мы уже знаем, что скорость звука в воздухе зависит от температуры, давления. Но на практике, чтобы рассчитать толщину звукопоглотителя для ослабления звука определённого диапазона частот или для оценки размера мембраны микрофона, этого вполне достаточно.

Музыкальные ноты имеет определённые частоты, значит и определённую длину волн. Например, у фортепиано верхняя октава создаёт звуки в районе 2 см, а нижняя около 10 м. Но дека фортепиано не очень эффективно генерирует эти звуки, в отличии, например, от органа. Почему?

Вернёмся к нашей руке. Допустим мы всё-таки наделены сверх способностями и можем махать рукой 100 раз в секунду = 100 Гц. Этот источник звука был бы всё равно несовершенен, так как часть воздуха огибала его сбоку. Чтобы этого не было, источник для таких низких частот должен быть гораздо большего размера (например, дека фортепиано более эффективна, поскольку потери на её краях невелики, а органа ещё эффективнее). Если же вибратор колеблется очень быстро воздух не успевает растекаться по сторонам. Поэтому для очень высоких частот даже малые поверхности могут быть эффективными излучателями звука.

Спасибо, что читаете New Style Sound. Подписывайтесь и делитесь с друзьями.

Источник

Длина звуковой волны

Звуковые волны в разных средах

В большинстве случаев мы воспринимаем звук, распространяющийся в воздухе. Воздушная звуковая волна – это ряд распространяющихся в воздухе колебаний плотности – сжатий и разрежений. То есть, звук представляет собой продольную механическую волну.

Рис. 1. Звук как ряд сжатий и разрежений.

Для распространения механической волны необходимо наличие упругой среды, которой является не только воздух. А, значит, звук может распространяться и в других средах – в жидкостях и кристаллах. Однако, упругость жидкостей и кристаллов гораздо выше, чем упругость воздуха, поэтому колебания точек в таких средах среде происходит с гораздо большими внутренними напряжениями. Это приводит к тому, что колебания распространяются намного быстрее.

Длина звуковой волны

Если скорость распространения звука в различных средах различна, а его частота фиксирована, то расстояние между соседними сжатиями или разрежениями будет также различно.

Это расстояние и называется длиной звуковой волны. Поскольку частота и период связаны простой обратной зависимостью, формулу длины звуковой волны можно получить как на основе частоты колебаний, так и на основе периода:

  • $\lambda$ – длина волны (м);
  • $v$ – скорость звука в среде (м/с);
  • $T$ – период звуковых колебаний (с);
  • $\nu$ – частота звуковых колебаний (Гц).

Из формулы можно видеть, что длина волны прямо пропорциональна скорости звука в среде. При одной и той же частоте длина волны будет наименьшей в газах при невысоких давлениях, будет больше в жидкостях, и самой большой будет в кристаллах. Например, для частоты 500гц:

Среда

v (м/с)

λ(м)

Рис. 2. Длина звуковой волны.

Роль длины звуковой волны

Звуковые волны способны отражаться от границ сред. Это свойство используется в ряде случаев и человеком и Природой. Если в среде есть какие-то неоднородности – то звуковые волны отражаются от них, и по картине отражения можно делать выводы о расположении неоднородностей. Такой процесс называется эхолокацией. Природное использование эхолокации – поведение летучих мышей и дельфинов. Человек использует эхолокацию в целях дефектоскопии промышленных установок, а также в медицинской практике, для исследования внутренних органов.

Рис. 3. Эхолокация в природе и технике.

Однако, для отражения волны граница между средами должна иметь размеры больше ее длины. Если длина волны будет больше, волна будет просто огибать неоднородность, не отражаясь. Отсюда следует важный вывод, что для обнаружения небольших неоднородностей длина звуковой волны должна быть как можно меньше.

Именно поэтому и человек и Природа для эхолокации использует ультразвук. Малая длина волны ультразвука способствует обнаружению самых мелких неоднородностей.

Что мы узнали?

Звук представляет собой распространяющиеся в среде сжатия и расширения. Длина звуковой волны – это расстояние между ближайшими сжатиями или расширениями. В разных средах длина волны различна, короткие ультразвуковые волны удобны для эхолокации.

Источник

Звуковые волны — свойства, характеристики и примеры применения в физике

В общем случае звуковые волны физика рассматривает как распространение возмущений давления в упругих средах. Человеческое ухо улавливает аномалию, воспринимая звук.

Изучающая свойства явления наука называется акустикой. От греческого ἀκούω (слышать). Имеются в виду небольшие изменения параметров в отличие от физики ударных волн.

Звуковые волны

Процесс распространения связан с колебательным механическим движением частиц. Достаточно каким-либо образом создать скачок давления, и частицы «толкнут» соседние.

Уравнение звуковой волны в газе (гармоничные колебания) будет выглядеть так:

p – начальное давление (Па);

ω – круговая частота (Гц);

k – волновое число.

Формулы связи длины звуковой волны, скорости, иные характеристики:

v – скорость волны (м/с);

λ – длина волны (м);

Источник звука

Под источником звука понимают вещь, спровоцировавшую волну. Например, динамик или музыкальный инструмент.

В громкоговорителе для извлечения шума используется подвижная мембрана. В духовых инструментах – движение воздуха по внутренним ходам различной геометрии.

Из струнных звук извлекают при помощи трения смычка или при помощи щипков, ударов. Человек выдает речь, вокал, при помощи голосовых связок.

Скорость звуковой волны

Скорость распространения акустической волны является важной физической характеристикой среды или материала, поскольку со скоростью звука передаются любые возмущения.

Величина зависит от упругих свойств среды. Например, от давления, температуры. Для атмосферного воздуха важна влажность.

В общем случае определяется отношением модуля всестороннего сжатия и номинальной плотностью.

Для практических целей замеряется опытным путем. В жидкостях звук распространяется быстрее, чем в газах.

Громкость

Зависит от перемещаемой волной энергии. Замеряют в Вт/м 2 . Но интенсивность принято измерять в децибелах.

Существует масса приложений для компьютеров, смартфонов. Специалисты вооружаются специализированными устройствами.

Бел – десятичный логарифм отношения текущего уровня интенсивности в фоновому, пороговому. Осталось умножить на 10 (поскольку децибел).

Вот примеры уровня шума для разных источников.

Высота и тембр звука

Считается, что человеческое ухо воспринимает с разным успехом частоты диапазона 20…20 000 Гц. Оптимальными для слуха является интервал 1 000…5 000 Гц.

Высота определяется частотой. В связанной с музыкальными инструментами акустике измеряется также в мелах.

В музыкальных колонках в зависимости от частот звук может разделяться на полосы (НЧ, СЧ, ВЧ). На каждый громкоговоритель поступает соответственно отфильтрованный звук.

Рассуждения корректны, если имеем гармоничные колебания (синусоида), определенный тон. Примером такого звучания может служить камертон. Реальные инструменты дают дополнительные гармоники (обертона), образующие тембр.

Так выглядит звук от разных источников на одной ноте.

Звуковые явления

Звук обладает ярко выраженными волновыми свойствами:

1. Интерференция или сложение. В зависимости от условий волны могут взаимно усиливаться или ослабляться.

При проведении крупных концертных мероприятий учитывается возможные «деформации» звука в некоторых участках помещения. Эффект связан с обильным отражением (рефракцией) волн от стен, потолка, пола. Особенно коварно поведение линейных массивов.

Рота бойцов разрушит мост, идя по нему «в ногу». Конструкции не выдерживает наступающего резонанса.

2. Дифракция. Огибание препятствия, если длина волны существенно больше.

3. Замеренная частота источника увеличивается в процессе сближения с последним (эффект Доплера).

Применение звуковых волн

Помимо ценности общения друг с другом, звук дает возможность наслаждаться музыкой и обогащать свое представление об окружающем мире. Кроме слышимого спектра существуют инфра- и ультразвук. Ниже и выше границ слышимости соответственно.

УЗИ (ультразвуковое исследование) позволяет «увидеть» внутренности пациента без скальпеля и небезопасного рентгеновского аппарата. Эхолокатор поставляет морякам информацию о глубинах и рельефе дна. Офицер-гидроакустик обнаружит спрятавшуюся подводную лодку. Характер отражения ультразвука поможет обнаружить скрытый дефект в ответственной детали.

Слабо затухающий в средах инфразвук предупредит о стихийном бедствии. Регистрирующие приборы обнаруживают и локализуют сотрясения почвы и скальных пород. Это важно для изучения и предсказания землетрясений. Таким же образом обнаруживаются запрещенные испытания ядерного оружия. Предупрежден – значит вооружен.

Источник