Меню

Единица измерения электрического импульса



Электрические импульсы и их параметры

Под электрическим импульсом понимают отклонение напряжения или тока от некоторого постоянного уровня (в частности, от нулевого), наблюдаемое в течение времени, меньшего или сравнимого с длительностью переходных процессов в схеме.

Как уже было сказано, под переходным процессом понимается всякое резкое изменение установившегося режима в электрической цепи за счёт действия внешних сигналов или переключений внутри самой цепи. Таким образом, переходный процесс – это процесс перехода электрической цепи из одного стационарного состояния в другое. Как бы ни был короток этот переходный процесс, – он всегда конечен во времени. Для цепей, в которых время существования переходного процесса несравненно меньше времени действия внешнего сигнала (напряжения или тока), режим работы считается установившимся, а сам внешний сигнал для такой цепи не является импульсным. Примером этого может служить срабатывание электромагнитного реле.

Когда же длительность действующих в электрической цепи сигналов напряжения или тока становится соизмеримой с длительностью процессов установления, переходный процесс оказывает настолько сильное влияние на форму и параметры этих сигналов, что их нельзя не учитывать. В этом случае бóльшая часть времени воздействия сигнала на электрическую цепь совпадает со временем существования переходного процесса (рис.1.4). Режим работы цепи во время действия такого сигнала будет нестационарным, а воздействие его на электрическую цепь – импульсным.

а) б)

Рис.1.4. Соотношение между длительностью сигнала и длительностью

а) длительность переходного процесса значительно меньше длительности

Рис.1.5. Электрические сигналы сложной формы

Наличие промежутков времени сообщает импульсному сигналу характерную прерывистую структуру. Некоторая условность таких определений заключается в том, что процесс установления теоретически длится бесконечно.

Могут быть такие промежуточные случаи, когда переходные процессы в цепях не успевают практически заканчиваться от импульса к импульсу, хотя действующие сигналы продолжают называть импульсными. В таких случаях возникают дополнительные искажения формы импульсов, вызванные наложением переходного процесса на начало последующего импульса.

Различают два вида импульсов: видеоимпульсы и радиоимпульсы. Видеоимпульсы получают при коммутации (переключении) цепи постоянного тока. Такие импульсы не содержат высокочастотных колебаний и имеют постоянную составляющую (среднее значение), отличную от нуля.

Видеоимпульсы принято различать по их форме. На рис. 1.6. показаны наиболее часто встречающиеся видеоимпульсы.

Рис. 1.6. Формы видеоимпульсов:

а) прямоугольные; б) трапецеидальные; в) остроконечные;

г) пилообразные; д) треугольные; е) разнополярные.

Рассмотрим основные параметры одиночного импульса (рис.1.7).

Рис. 1.7. Параметры одиночного импульса

Форму импульсов и свойства отдельных его участков с количественной стороны оценивают следующими параметрами:

· Um – амплитуда (наибольшее значение) импульса. Амплитуда импульса Um (Im) выражается в вольтах (амперах).

· τ и – длительность импульса. Обычно измерения длительности импульсов или отдельных участков производят на определённом уровне от их основания. Если это не оговаривается, то длительность импульса определяется на нулевом уровне. Однако чаще всего длительность импульса определяется на уровне 0,1Um или 0,5Um, считая от основания. В последнем случае длительность импульса называется активной длительностью и обозначается τ иа. При необходимости и в зависимости от формы импульсов принятые значения уровней для измерения специально оговариваются.

· τф – длительность фронта, определяемая временем нарастания импульса от уровня 0,1Um до уровня 0,9Um .

· τс – длительность среза (заднего фронта), определяемая временем спада импульса от уровня 0,9Um до уровня 0,1Um. Когда длительность фронта или среза измеряется на уровне 0,5Um , она называется активной длительностью и обозначается добавлением индекса «а» аналогично активной длительности импульса. Обычно τф и τс составляет единицы процентов от длительности импульса. Чем меньше τф и τс по сравнению с τ и , тем больше форма импульса приближается к прямоугольной. Иногда вместо τф и τс фронты импульса характеризуют скоростью нарастания (спада). Эту величину называют крутизной (S) фронта (среза) и выражают в вольтах в секунду /с) или киловольтах в секунду (кВ/с). Для прямоугольного импульса

………………………………(1.14).

· Участок импульса между фронтами называют плоской вершиной. На рис.1.7 показан спад плоской вершины (ΔU).

· Мощность в импульсе. Энергия W импульса, отнесённая к его длительности, определяет мощность в импульсе:

………………………………(1.15).

Она выражается в ваттах (Вт), киловаттах (кВт) или дольных едини-

В импульсных устройствах используются импульсы, имеющие длительности от долей секунды до наносекунд (10 – 9 с).

Характерными участками импульса (рис.1.8), определяющими его форму,

· срез (3 – 4), иногда называемый задним фронтом;

Рис.1.8. Характерные участки импульса

Отдельные участки у импульсов различной формы могут отсутствовать. Следует иметь в виду, что реальные импульсы не имеют формы, строго соответствующей названию. Различают импульсы положительной и отрицательной полярности, а также двусторонние (разнополярные) импульсы

Радиоимпульсами называются импульсы высокочастотных колебаний напряжения или тока обычно синусоидальной формы. Радиоимпульсы не имеют постоянной составляющей. Радиоимпульсы получают модулированием высокочастотных синусоидальных колебаний по амплитуде. При этом амплитудная модуляция производится по закону управляющего видеоимпульса. Формы соответствующих радиоимпульсов, полученных с помощью амплитудной модуляции, показаны на рис. 1.9:

Рис.1.9. Формы радиоимпульсов

Электрические импульсы, следующие друг за другом через равные промежутки времени, называются периодической последовательностью (рис.1.10).

Рис.1.10. Периодическая последовательность импульсов

Периодическая последовательность импульсов характеризуется следующими параметрами:

· Период повторения Тi – промежуток времени между началом двух соседних однополярных импульсов. Он выражается в секундах (с) или дольных единицах секунды (мс; мкс; нс). Величина, обратная периоду повторения, называется частотой повторения (следования) импульсов. Она определяет количество импульсов, в течение одной секунды и выражается в герцах (Гц), килогерцах (кГц) и т.д.

……………………………….. (1.16)

· Скважность последовательности импульсов – это отношение периода повторения к длительности импульса. Обозначается буквой q:

………………… (1.17)

Скважность – безразмерная величина, которая может изменяться в очень широких пределах, так как длительность импульсов может быть в сотни и даже тысячи раз меньше периода импульсов или, наоборот, занимать большую часть периода.

Величина, обратная скважности, называется коэффициентом заполнения. Эта величина безразмерная, меньшая единицы. Она обозначается буквой γ:

…………………………(1.18)

Последовательность импульсов с q = 2 называется «меандром». У такой

последовательности (рис.1.6,е). Если Тi>> τи, то такая последовательность называется радиолокационной.

· Среднее значение (постоянная составляющая) импульсного колебания. При определении среднего за период значения импульсного колебания Uср (или Іср) импульс напряжения или тока распределяют равномерно на весь период так, чтобы площадь Uср ·Тi была равна площади импульса Sи = Um · τи (рис. 1.10).

Для импульсов любой формы среднее значение определяется из выражения

……………………(1.19),

где U(t) – аналитическое выражение формы импульса.

Для периодической последовательности импульсов прямоугольной формы, у которой U(t) = Um , период повторения Тi и длительность импульса τи, это выражение после подстановки и преобразования принимает вид:

…………………….(1.20).

Из рис. 1.10 видно, что Sи = Um · τи = Uср·Тi , откуда следует:

……………(1.21),

где U – называется постоянной составляющей.

Таким образом, среднее значение (постоянная составляющая) напряжения (тока) последовательности прямоугольных импульсов в q раз меньше амплитуды импульса.

· Средняя мощность последовательности импульсов. Энергия импульса W, отнесённая к периоду Тi , определяет среднюю мощность импульса

…………………………….. (1.22).

Сравнивая выраженияРи и Рср, получим

…………………(1.23)

и ……………………. (1.24),

т.е. средняя мощность и мощность в импульсе отличаются в q раз.

Отсюда следует, что мощность в импульсе, которую обеспечивает генератор, может в q раз превосходить среднюю мощность генератора.

Задачи и упражнения

1. Амплитуда импульса равна 11 кВ, длительность импульса 1 мкс. Определить крутизну фронта импульса, если считать длительность фронта равной 20 % длительности импульса.

2. Амплитуда прямоугольных импульсов, имеющих частоту следования 1250 Гц и скважность 2300, равна 11 кВ. Определить крутизну фронта и среза, если считать длительность фронта и среза равной 20 % от длительности импульса.

3. Определить постоянную времени цепи, состоящей из конденсатора ёмкостью 5000 пФ и активного сопротивления 0,5 Мом.

4. Определить постоянную времени цепи, состоящей из индуктивности 20 мГн и активного сопротивления 5 кОм.

5. Определить среднюю мощность радиопередающего устройства РЛС, имеющую следующие параметры: импульсная мощность 800 кВт; длительность зондирующего импульса 3,2 мкс; частота следования зондирующих импульсов 375 Гц.

6. Конденсатор ёмкостью 400 пФ заряжается от источника постоянного напряжения 200 В через сопротивление 0,5 Мом. Определить напряжение на конденсаторе через 600 мкс после начала заряда.

Читайте также:  Как измерить базовую высоту резервуара

7. К цепи, состоящей из конденсатора ёмкостью 10 пФ и сопротивления 2 Мом, подключён источник постоянного тока с напряжением 50 В. Определить ток в момент включения и через 40 мкс после включения.

8. Конденсатор, заряженный до напряжения 300 В, разряжается через сопротивление 300 Мом. Определить величину разрядного тока через время t = 3τ после начала разряда.

9. Какое потребуется время для заряда конденсатора ёмкостью 100 пФ до напряжения 340 В, если напряжение источника 540 В и сопротивление цепи заряда 100 кОм?

10. Цепь, состоящая из индуктивности 10 мГн и сопротивления 5 кОм, подключена к источнику постоянного напряжения 250 В. Определить ток, протекающий в цепи через 4 мкс после включения.

Глава 2. Формирование импульсов

Линейные и нелинейные цепи

В импульсной технике широко применяются цепи и устройства, формирующие напряжения одной формы из напряжения другой. Такие задачи решаются с помощью линейных и нелинейных элементов.

Элемент, параметры которого (сопротивление, индуктивность, ёмкость) не зависят от величины и направления токов и приложенных напряжений, называется линейным.Цепи, содержащие линейные элементы, называются

линейными.

Свойства линейных цепей:

· Вольт-амперная характеристика (ВАХ) линейной цепи представляет собой прямую линию, т.е. величины токов и напряжений будут связаны между собой линейными уравнениями с постоянными коэффициентами. Пример ВАХ такого вида – закон Ома: .

· Для расчёта (анализа) и синтеза линейных цепей применим принцип суперпозиций (наложения). Смысл принципа суперпозиций заключается в следующем: если к входу линейной цепи приложено синусоидальное напряжение, то напряжение на любом её элементе будет иметь такую же форму. Если же входное напряжение является сложным сигналом (т.е. является суммой гармоник), то на любом элементе линейной цепи сохраняются все гармонические составляющие этого сигнала: иначе говоря, сохраняется форма приложенного к входу напряжения. При этом на выходе линейной цепи изменится только соотношение амплитуд гармоник.

· Линейная цепь не преобразует спектр электрического сигнала. Она может изменить составляющие спектра только по амплитуде и фазе. Это является причиной возникновения линейных искажений.

· Всякая реальная линейная цепь искажает форму сигнала за счёт переходных процессов и конечной ширины полосы пропускания.

Строго говоря, все элементы электрических цепей нелинейны. Однако в определённом интервале изменения переменных величин нелинейность элементов проявляется настолько мало, что практически можно пренебречь ею. Примером может служить усилитель радиочастоты (УРЧ) радиоприёмника, на вход которого подаётся очень малый по амплитуде сигнал от антенны.

Нелинейность входной характеристики транзистора, стоящего в первом каскаде УРЧ, в пределах нескольких микровольт настолько мала, что её просто не учитывают.

Обычно область нелинейного поведения элемента ограничена, а переход к нелинейности может происходить либо постепенно, либо скачкообразно.

Если на вход линейной цепи подать сложный сигнал, который является суммой гармоник разных частот, а линейная цепь содержит частотно-зависимый элемент (L или C), то форма напряжений на её элементах не будет повторять форму входного напряжения. Это объясняется тем, что гармоники входного напряжения по-разному пропускаются такой цепью. В результате прохождения входного сигнала через ёмкости и индуктивности цепи соотношения между гармоническими составляющими на элементах цепи изменяются по амплитуде и фазе по отношению к входному сигналу. В результате соотношения между амплитудами и фазами гармоник на входе цепи и на её выходе не одинаковы. Это свойство положено в основу формирования импульсов с помощью линейных цепей.

Элемент, параметры которого зависят от величины и полярности приложенных напряжений или протекающих токов, называется нелинейным, а цепь, содержащую такие элементы, называют нелинейной.

К нелинейным элементам относятся электровакуумные приборы (ЭВП), полупроводниковые приборы (ППП), работающие на нелинейном участке ВАХ, диоды (вакуумные и полупроводниковые), а также трансформаторы с ферромагнетиками.

Свойства нелинейных цепей:

· Ток, протекающий через нелинейный элемент, не пропорционален приложенному к нему напряжению, т.е. зависимость между напряжением и током (ВАХ) носит нелинейный характер. Примером такой ВАХ служат входные и выходные характеристики ЭВП и ППП.

· Процессы, протекающие в нелинейных цепях, описываются нелинейными уравнениями различного вида, коэффициенты которых зависят от самой функции напряжения (тока) или от её производных, а ВАХ нелинейной цепи имеет вид кривой или ломаной линии. Примером могут служить характеристики диодов, триодов, тиристоров, стабилитронов и др.

· Для нелинейных цепей принцип суперпозиций неприменим. При воздействии внешнего сигнала на нелинейные цепи в них всегда возникают токи, содержащие в своём составе новые частотные составляющие, которых не было во входном сигнале. Это является причиной возникновения

нелинейных искажений, в результате чего сигнал на выходе нелинейной

цепи всегда отличается по форме от входного сигнала.

Дифференцирующие цепи

Для того чтобы получить импульс желаемой формы из заданной формы напряжения с помощью пассивной электрической цепи, необходимо знать формирующие свойства этой цепи. Формирующие свойства характеризуют способность линейной цепи определённым образом изменять форму передаваемого (обрабатываемого) сигнала и полностью определяются видом её частотных и временных характеристик.

В импульсной технике для формирования сигналов широко применяются линейные двух- и четырёхполюсники.

Дифференцирующей называется цепь, на выходе которой напряжение пропорционально первой производной от входного напряжения. Математически это выражается следующей формулой:

………………………. (2.1),

где Uвх – напряжение на входе дифференцирующей цепи;

Uвых – напряжение на выходе дифференцирующей цепи;

k – коэффициент пропорциональности.

Дифференцирующие цепи (ДЦ) применяются для дифференцирования видеоимпульсов. При этом дифференцирующие цепи позволяют производить следующие преобразования:

· укорочение прямоугольных видеоимпульсов и формирование из них остроконечных импульсов, служащих для запуска и синхронизации различных импульсных устройств;

· получение производных по времени от сложных функций. Это используется в измерительной технике, системах авторегулирования и автосопровождения;

· формирование прямоугольных импульсов из пилообразных.

Простейшими дифференцирующими цепями являются ёмкостная (RC)и индуктивная (RL) цепи (рис.2.1):

а) б)

Рис.2.1. Виды дифференцирующих цепей:

а) ёмкостная ДЦ; б) индуктивная ДЦ

Индуктивная дифференцирующая цепь применяется гораздо реже, чем ёмкостная по чисто практическим соображениям. Дело в том, что для выполнения условия дифференцирования требуется катушка с большой индуктивностью. Такие катушки без железа получаются очень громоздкими и имеют боль-шую паразитную (межвитковую) ёмкость, искажающую результат дифференцирования. Применять же катушки с железом нежелательно, т.к. искажается форма тока из-за нелинейности кривой намагничивания железа, вследствие чего при дифференцировании возникают нелинейные искажения выходного сигнала. Поэтому мы будем рассматривать ёмкостную дифференцирующую цепь.

Покажем, что RC— цепь при определённых условиях становится дифференцирующей.

Известно, что ток, протекающий через ёмкость, определяется выражением:

. (2.2).

В то же время из рис.2.1,а очевидно, что

,

т.к. R и C представляют собой делитель напряжения. Поскольку напряжение

, то .

…………………. (2.3).

Подставив выражение (2.2) в (2.3), получим:

……………… (2.4).

Если выбрать достаточно малую величину R так, чтобы выполнялось условие,

то получим приближённое равенство

……………………….. (2.5).

Это равенство тождественно (2.1).

Выбрать R достаточно малой величины – это значит обеспечить выполнение неравенства

, т.е. ,

где ωв = 2πfв – верхняя граничная частота гармоники выходного сигнала, ещё имеющая существенное значение для формы выходного импульса.

Коэффициент пропорциональности в выражении (2.1) k = RC = τ носит название постоянной времени дифференцирующей цепи. Чем резче изменяется подводимое напряжение, тем меньшей величиной τ должна обладать дифференцирующая цепь, чтобы на выходе напряжение было близко по форме к производной от Uвх. Параметр τ = RC имеет размерность времени. Это можно подтвердить тем, что в соответствии с Международной системой единиц (СИ) единица измерения электрического сопротивления

,

а единица измерения электрической ёмкости

.

Принцип действия дифференцирующей цепи.

Принципиальная схема ёмкостной дифференцирующей цепи изображена на рис.2.2, а эпюры напряжений – на рис.2.3.

Рис.2.2. Принципиальная схема ёмкостной дифференцирующей цепи

Пусть на вход подаётся идеальный прямоугольный импульс, у которого

τф= τс = 0, а внутреннее сопротивление источника сигнала Ri = 0.Пусть импульс определяется следующим выражением:

    Исходное состояние схемы (t 5τ = 5RC.

Чем меньше τ цепи, тем быстрее заряжается и разряжается конденсатор и тем меньшую длительность имеют выходные импульсы, тем более остроконечными они становятся и, следовательно, тем точнее дифференцирование. Однако уменьшать τ целесообразно до определённого предела.

Изменение формы импульса на выходе дифференцирующей цепи можно объяснить с точки зрения спектрального анализа.

Каждая гармоника входного импульса делится между R и C. Для гармоник низких частот, определяющих вершину входного импульса, конденсатор представляет большое сопротивление, т.к.

Читайте также:  Лабораторная работа определение абсолютной погрешности при прямых измерениях

>> R.

Поэтому на выход плоская вершина входного импульса почти не передаётся.

Для высокочастотных составляющих входного импульса, формирующих его фронт и срез,

Источник

Импульс электрический

Большая советская энциклопедия. — М.: Советская энциклопедия . 1969—1978 .

Смотреть что такое «Импульс электрический» в других словарях:

ИМПУЛЬС ЭЛЕКТРИЧЕСКИЙ — кратковрем. отклонение электрич. напряжения или силы тока от нек рого пост. значения. И. э. пост. тока или напряжения (однополярные), наз. видеоимпульсами. Различают прямоугольные, пилообразные, трапецеидальные, экспоненциальные, колоколообразные … Большой энциклопедический политехнический словарь

импульс электрический — кратковременное отклонение электрического напряжения или силы тока от некоторого постоянного (в т. ч. нулевого) значения. Электрический импульс (импульсный сигнал) является запускающим (стартовым) сигналом в работе многих систем автоматики,… … Энциклопедия техники

ИМПУЛЬС — в физике, 1) мера механического движения (то же, что количество движения). Импульсом обладают все формы материи, в том числе электромагнитные, гравитационные и другие поля (смотри Поля физические). В простейшем случае механического движения… … Современная энциклопедия

ИМПУЛЬС — в физике: 1) мера механического движения (то же что количество движения). Импульсом обладают все формы материи, в т. ч. электромагнитные и гравитационные поля;..2) импульс силы мера действия силы за некоторый промежуток времени; равен… … Большой Энциклопедический словарь

ИМПУЛЬС (в физике) — ИМПУЛЬС в физике: 1) мера механического движения (то же, что количество движения (см. КОЛИЧЕСТВО ДВИЖЕНИЯ)). Импульсом обладают все формы материи, в т. ч. электромагнитные и гравитационные поля; 2) импульс силы мера действия силы за некоторый… … Энциклопедический словарь

импульс — 1. Толчок к чему либо, побуждение к совершению чего либо; причина, вызывающая некое действие. 2. Импульс электрический быстрый кратковременный скачок электрического тока или напряжения. Словарь практического психолога. М.: АСТ, Харвест. С. Ю.… … Большая психологическая энциклопедия

импульс — 3.9 импульс: Униполярная волна напряжения или тока, возрастающая без заметных колебаний с большой скоростью до максимального значения и уменьшающаяся, обычно с меньшей скоростью, до нуля с небольшими, если это будет иметь место, переходами в… … Словарь-справочник терминов нормативно-технической документации

импульс — а; м. [лат. impulsus] 1. Побудительный момент, толчок, вызывающий какое л. действие. Электрический и. (электр., радио; кратковременное изменение электрического напряжения или силы тока). Нервный и. (физиол.; распространяющийся по нервному… … Энциклопедический словарь

Импульс — (от лат. impulsus удар толчок) 1) импульс механический, мера механического движения; представляет собой векторную величину, равную для материальной точки произведению массы m этой точки на её скорость v и направленную так же, как вектор… … Большая советская энциклопедия

Импульс — (от лат. impulsus удар, толчок) 1) побуждение, толчок, стремление; побудительная причина; 2) (в физике) мера механического движения; то же, что количество движения; 3) импульс силы мера действия силы за некоторый промежуток времени; 4) импульс… … Начала современного естествознания

Источник

Импульс

И́мпульс (Количество движения) — векторная физическая величина, являющаяся мерой механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

.

В более общем виде, справедливом также и в релятивистской механике, определение имеет вид:

Содержание

История появления термина

Ещё в первой половине XVII века понятие импульса введено Рене Декартом. Так как физическое понятие массы в то время отсутствовало, он определил импульс как произведение «величины тела на скорость его движения». Позже такое определение было уточнено Исааком Ньютоном. Согласно Ньютону, «количество движения есть мера такового, устанавливаемая пропорционально скорости и массе».

«Школьное» определение импульса

В классической механике полным импульсом системы материальных точек называется векторная величина, равная сумме произведений масс материальных точек на их скорости:

соответственно величина называется импульсом одной материальной точки. Это векторная величина, направленная в ту же сторону, что и скорость частицы. Единицей измерения импульса в Международной системе единиц (СИ) является килограмм-метр в секунду (кг·м/с).

Если мы имеем дело с телом конечного размера, не состоящим из дискретных материальных точек, для определения его импульса необходимо разбить тело на малые части, которые можно считать материальными точками и просуммировать по ним, в результате получим:

Импульс системы, на которую не действуют никакие внешние силы (или они скомпенсированы), сохраняется во времени:

. (*)

Сохранение импульса в этом случае следует из второго и третьего закона Ньютона: написав второй закон Ньютона для каждой из составляющих систему материальных точек и просуммировав по всем материальным точкам, составляющим систему, в силу третьего закона Ньютона получим равенство (*).

В релятивистской механике трёхмерным импульсом системы невзаимодействующих материальных точек называется величина

,

Для замкнутой системы не взаимодействующих материальных точек эта величина сохраняется. Однако трёхмерный импульс не есть релятивистски инвариантная величина, так как он зависит от системы отсчёта. Более осмысленной величиной будет четырёхмерный импульс, который для одной материальной точки определяется как

На практике часто применяются следующие соотношения между массой, импульсом и энергией частицы:

В принципе, для системы невзаимодействующих материальных точек их 4-импульсы суммируются. Однако для взаимодействующих частиц в релятивистской механике следует учитывать импульсы не только составляющих систему частиц, но и импульс поля взаимодействия между ними. Поэтому гораздо более осмысленной величиной в релятивистской механике является тензор энергии-импульса, который в полной мере удовлетворяет законам сохранения.

Обобщённый импульс в теоретической механике

В теоретической механике обобщённым импульсом называется частная производная лагранжиана системы по обобщённой скорости

В случае, если лагранжиан системы не зависит от некоторой обобщённой координаты, то в силу уравнений Лагранжа .

Для свободной частицы функция Лагранжа имеет вид: , отсюда:

Независимость лагранжиана замкнутой системы от её положения в пространстве следует из свойства однородности пространства: для хорошо изолированной системы её поведение не зависит от того, в какое место пространства мы её поместим. По теореме Нётер из этой однородности следует сохранение некоторой физической величины. Эту величину и называют импульсом (обычным, не обобщённым).

Обобщённый импульс в электромагнитном поле

В электромагнитном поле полный импульс частицы равен:

где — векторный потенциал электромагнитного поля.

Формальное определение импульса

Импульсом называется сохраняющаяся физическая величина, связанная с однородностью пространства (инвариант относительно трансляций).

Импульс электромагнитного поля

Электромагнитное поле, как и любой другой материальный объект, обладает импульсом, который легко можно найти, проинтегрировав вектор Пойнтинга по объёму:

(в системе СИ).

Существованием импульса у электромагнитного поля объясняется, например, такое явление, как давление электромагнитного излучения.

Импульс в квантовой механике

Формальное определение

В квантовой механике оператором импульса частицы называют оператор — генератор группы трансляций. Это эрмитов оператор, собственные значения которого отождествляются с импульсом системы частиц. В координатном представлении для системы нерелятивистских частиц он имеет вид

где — оператор набла, соответствующий дифференцированию по координатам -ой частицы. Гамильтониан системы выражается через оператор импульса:

Для замкнутой системы () оператор импульса коммутирует с гамильтонианом и импульс сохраняется.

Определение через волны де Бройля

Формула де Бройля связывает импульс и длину волны де Бройля.

Модуль импульса обратно пропорционален длине волны :

В векторном виде это записывается как где — волновой вектор, — постоянная Планка.

См. также

Литература

  • Арнольд В. И. Математические методы классической механики. — 5-е изд., стереотипное. — М .: Едиториал УРСС, 2003. — 416 с. — 1500 экз. — ISBN 5-354-00341-5
  • Ландау, Л. Д., Лифшиц, Е. М. Механика. — Издание 4-е, исправленное. — М .: Наука, 1988. — 215 с. — («Теоретическая физика», том I). — ISBN 5-02-013850-9
  • Ландау, Л. Д., Лифшиц, Е. М. Теория поля. — Издание 7-е, исправленное. — М .: Наука, 1988. — 512 с. — («Теоретическая физика», том II). — ISBN 5-02-014420-7
  • Сивухин Д. В. Общий курс физики. — Издание 4-е. — М .: Физматлит, 2002. — Т. I. Механика. — 792 с. — ISBN 5-9221-0225-7

Wikimedia Foundation . 2010 .

Смотреть что такое «Импульс» в других словарях:

импульс — импульс, а … Русский орфографический словарь

ИМПУЛЬС — (лат., от impellere толкать). Внушение, побуждение, понуждение, толчок к чему либо. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ИМПУЛЬС 1) толчок, побуждающий к движению; 2) сильное нравственное побуждение.… … Словарь иностранных слов русского языка

ИМПУЛЬС — в физике, 1) мера механического движения (то же, что количество движения). Импульсом обладают все формы материи, в том числе электромагнитные, гравитационные и другие поля (смотри Поля физические). В простейшем случае механического движения… … Современная энциклопедия

импульс — См. побуждение. Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. импульс возбуждение, толчок, стимул, побуждение, удар, выброс, всплеск Словарь русс … Словарь синонимов

ИМПУЛЬС — в физике: 1) мера механического движения (то же что количество движения). Импульсом обладают все формы материи, в т. ч. электромагнитные и гравитационные поля;..2) импульс силы мера действия силы за некоторый промежуток времени; равен… … Большой Энциклопедический словарь

ИМПУЛЬС — внезапное и быстроисчезающее повышение какого либо параметра в системе (давления, температуры, освещённости и др.), а также единичный сигнал конечной энергии, существенно отличный от нуля в течение ограниченного времени; характеризуется фазой и… … Большая политехническая энциклопедия

ИМПУЛЬС — (от лат. impulsus удар, толчок), то же, что количество движения. Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 … Физическая энциклопедия

импульс — а, м. mpulsion f., нем. Impulsion, Impuls. Побудительная причина к какому л. действию; толчок. побуждение. БАС 1. Граф < Салтыков> нечто временное и частное, усилен мною и моею честью, меняет ту импульзию на глупые одни pets interêts. 15 17 … Исторический словарь галлицизмов русского языка

ИМПУЛЬС — (лат.) побуждение, толчок; импульсивный – побудительный, определенный импульсом, совершаемый без (долгого) размышления; см. также Спонтанный. В физике импульс (произведение силы на время, в течение которого действует сила [k t]) есть увеличение… … Философская энциклопедия

ИМПУЛЬС — (от лат. impulsus толчок, побуждение), процесс в нервной системе, приводящий иннервируемые органы в состояние деятельности или состояние торможения. Ко всем эффекторным органам И. приходят по эфферентному нерву. В нормальных условиях И.в… … Большая медицинская энциклопедия

импульс — 1. Толчок к чему либо, побуждение к совершению чего либо; причина, вызывающая некое действие. 2. Импульс электрический быстрый кратковременный скачок электрического тока или напряжения. Словарь практического психолога. М.: АСТ, Харвест. С. Ю.… … Большая психологическая энциклопедия

Источник

Электрический импульс

Электрический импульс — кратковременный всплеск электрического напряжения или силы тока в определённом, конечном временном промежутке. Различают видеоимпульсы — единичные колебания какой-либо формы и радиоимпульсы — всплески высокочастотных колебаний. Видеоимпульсы бывают однополярные (отклонение только в одну сторону от нулевого потенциала) и двухполярные.

Содержание

Характеристики импульсов

Форма импульсов

Важной характеристикой импульсов является их форма, визуально наблюдать которую, можно, например, на экране осциллографа. В общем случае форма импульсов имеет следующие составляющие: фронт — начальный подъём, относительно плоская вершина (не для всех форм) и срез (спад) — конечный спад напряжения. Существует несколько типов импульсов стандартных форм, имеющих относительно простое математическое описание, такие импульсы широко применяются в технике

  • Прямоугольные импульсы — наиболее распространённый тип
  • Пилообразные импульсы
  • Треугольные импульсы
  • Трапецеидальные импульсы
  • Экспоненциальные импульсы
  • Колокольные (колоколообразные) импульсы
  • Импульсы, представляющие собой полуволны или другие фрагменты синусоиды (обрезка по горизонтали или по вертикали)

Кроме импульсов стандартной, простой формы иногда, в особых случаях, используются импульсы специальной формы, описываемой сложной функцией, существуют также сложные импульсы, форма которых имеет в значительной степени случайный характер, например, импульсы видеосигнала.

Параметры импульсов

В общем случае импульсы характеризуются двумя основными параметрами — амплитудой (размахом) и длительностью (обозначается τ или tи). Длительность пилообразных и треугольных импульсов определяется по основанию (от начала изменения напряжения до конца), для остальных типов импульсов длительность принято брать на уровне напряжения 50 % от амплитуды, для колокольных импульсов иногда используется уровень 10 %, длительность искусственно синтезированных колокольных импульсов (с чётко выраженным основанием) и полуволн синусоиды часто измеряется по основанию.

Для разных типов импульсов существуют дополнительные параметры, уточняющие форму или характеризующие степень её неидеальности. Например, для описания неидеальности прямоугольных импульсов используются такие параметры, как, длительности фронта и среза (в идеале должны стремиться к нулю), неравномерность вершины, а также размер выбросов напряжения после фронта и среза, возникающих в результате паразитных процессов.

Спектральное представление импульсов

Кроме временного представления импульсов, наблюдаемого по осциллографу, существует спектральное представление, выраженное в виде двух функций — амплитудного и фазового спектра.

Спектр одиночного импульса является непрерывным и бесконечным. Амплитудный спектр прямоугольного импульса имеет чётко выраженные минимумы по шкале частот, следующие с интервалом, обратным длительности импульса.

Многократные импульсы

Импульсные посылки (серии импульсов)

Иногда импульсы используются или возникают не поодиночке, а группами, которые называются сериями импульсов или импульсными посылками, в том случае, когда они формируются преднамеренно для передачи куда-либо. Импульсная посылка может нести какую-либо информацию единичного характера или служить в качестве идентификатора. Информационные посылки прямоугольных импульсов, в которых значимыми величинами являются количество импульсов, их временное расположение или длительности импульсов называются кодово-импульсными посылками или, в некоторых областях техники, кадрами, фреймами. Кодирование информации в посылках может быть осуществлено разными способами: двоичный цифровой код, время-импульсный код, код Морзе, набор заданного количества импульсов (как в телефонном аппарате). Во многих случаях импульсные посылки используются не поодиночке, а в виде непрерывных последовательностей посылок.

Импульсные последовательности

Импульсной последовательностью называется достаточно продолжительная последовательность импульсов, служащая для передачи непрерывно меняющейся информации, для синхронизации или для других целей, а также генерируемых непреднамеренно, например, в процессе искрообразования в коллекторно-щёточных узлах. Последовательности подразделяются на периодические и непериодические. Периодические последовательности представляют собой ряд одинаковых импульсов, повторяющихся через строго одинаковые интервалы времени. Длительность интервала называется периодом повторения (обозначается T), величина, обратная периоду — частотой повторения импульсов (обозначается F). Для последовательностей прямоугольных импульсов дополнительно применяются ещё две однозначно взаимосвязанных друг с другом параметра: скважность (обозначается Q) — отношение периода к длительности импульса и коэффициент заполнения — обратная скважности величина; иногда коэффициент заполнения используют и для характеристики квазипериодической и случайной последовательностей, в этом случае он равен среднему отношению суммы длительностей импульсов за достаточно большой промежуток времени к длительности этого промежутка. Спектр периодической последовательности является дискретным и бесконечным для конечной последовательности, конечным для бесконечной. Среди непериодических последовательностей с, технической точки зрения, наибольший интерес представляют квазипериодические и случайные последовательности (на практике используются псевдослучайные). Квазипериодические последовательности представляют собой последовательности импульсов, период которых или другие характеристики варьируются вокруг средних значений. В отличие от спектра периодической последовательности, спектр квазипериодической последовательности является, строго говоря, не дискретным, а гребенчатым, с незначительным заполнением между гребнями, однако, на практике этим иногда можно пренебречь, так, например, в телевизионной технике для создания полного видеосигнала к сигналу чёрно-белого изображения добавляют сигнал цветности таким образом, что гребни его спектра оказываются между гребнями чёрно-белого видеосигнала.

Импульсы как носители информации

По характеру информации импульсные сигналы могут использоваться однократно(разовое сообщение о событии) или для непрерывной передачи информации Последовательности импульсов могут передавать дискретизированную по времени аналоговую информацию или цифровую, возможны также случаи, когда в единый, в физическом смысле, сигнал вложено два вида информации, например, телевизионный сигнал с телетекстом.

Для представления информации используются различные характеристики как собственно импульсов, так и их совокупностей, как по отдельности, так и в сочетаниях

  • Форма импульсов
  • Длительность импульсов
  • Амплитуда импульсов
  • Частота следования импульсов
  • Фазовые соотношения в последовательности импульсов
  • Временные интервалы между импульсами в посылке
  • Позиционное комбинирование импульсов в посылке

Таким образом, можно выделить несколько обобщённых типов импульсных сигналов, несущих непрерывную информацию

  • Цифровой сигнал, информация в котором, как правило (но не обязательно), содержится в виде кодовых посылок
  • Аналоговый дискретизированный сигнал в виде квазипериодической последовательности
  • Аналоговый дискретизированный сигнал в виде импульсных посылок с аналоговым кодированием информации
  • Отдельно от предыдущих типов надо выделить видеосигнал (и соответствующий ему модулированный радиосигнал), в котором, в отличие от других сигналов, непрерывная информация содержится внутри самого импульса, благодаря его сложной форме

Источник

Сравнить или измерить © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Импульс
Размерность