Меню

Единица измерения объемной доли газа



Объёмная доля

Объёмная доля (иногда объёмная часть) — безразмерная величина, равная отношению объёма какого-то вещества в смеси к объёму всей смеси. Обозначается буквой φ.

Применяется в основном к газам.

Содержание

Смысл величины

Объёмная доля вычисляется по формуле:

,

  • V1 — объём растворённого вещества в единицах объёма;
  • V — общий объём раствора в тех же единицах.

Объёмная доля в химии

В химии величина используется в основном для газов, потому что объемная доля газовой смеси при н.у. равна его молярной концентрации.
Принято выражать объёмную долю в процентах.

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое «Объёмная доля» в других словарях:

объёмная доля — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN volume fraction … Справочник технического переводчика

ОБЪЁМНАЯ ДОЛЯ — безразмерная физ. величина, характеризующая состав смеси и равная отношению объёма компонента смеси, приведённого к физ. условиям смеси, к объёму смеси. О. д. выражается в долях единицы, например в сотых (проценты), тысячных (промилле),… … Большой энциклопедический политехнический словарь

объёмная доля нефти в продукции скважины в данный момент времени — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN oil holdup … Справочник технического переводчика

пористость объёмная — Доля пустот в объёме мембраны. [РХТУ им. Д.И. Менделеева, кафедра мембранной технологии] Тематики мембранные технологии … Справочник технического переводчика

ДОЛЯ — 1) рус. ед. массы, применявшаяся до введения метрической системы мер. 1 Д. равна 1/96 золотника, или 44,434 9 мг. Д. применялась и в качестве ед. веса (1 Д.= 44,4349 мгс = = 0,435 758 мН). 2) Часть целого, например массовая доля, молярная доля,… … Большой энциклопедический политехнический словарь

Миллиардная доля — Миллиардная доля единица измерения концентрации, и других относительных величин, миллиардная доля аналогична по смыслу проценту или промилле. Обозначается сокращением млрд−1 или ppb (англ. Parts per billion, читается «пи пи би»,… … Википедия

Миллионная доля — У этого термина существуют и другие значения, см. Ppm. Миллионная доля, пропромилле, (ppm) аббревиатура обозначает миллионную долю каких либо относительных величин (1•10−6 от базового показателя). Аналогична по смыслу проценту или промилле … Википедия

Концентрация растворов — Концентрация величина, характеризующая количественный состав раствора. Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л … Википедия

Концентрация раствора — Концентрация величина, характеризующая количественный состав раствора. Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л) … Википедия

Моляльность — Концентрация величина, характеризующая количественный состав раствора. Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л) … Википедия

Источник

Концентрации и доли. Как перевести одну концентрацию в другую.

При решении химических задач, при расчётах на работе, да и просто в жизни иногда приходится рассчитывать концентрации. Неважно, будет это школьная теоретическая задача, необходимость приготовить электролит для аккумулятора автомобиля, надобность узнать количество сахара для компота — все расчёты концентраций выполняются по известным формулам, которых не так много. Однако, с этим часто возникают трудности.

Прочитав эту статью, Вы научитесь легко рассчитывать концентрации веществ и при надобности играючи переводить одну концентрацию в другую. В статье приводятся примеры задач с решениями, а в конце приведём справочную табличку с формулами, которую можно распечатать и держать под рукой.

Массовая доля

Начнём с простого, но в то же время нужного способа выражения концентрации компонента в смеси — массовой доли.

Массовая доля есть отношение массы данного компонента к сумме масс всех компонентов. Обозначать её принято буквой w или ω (омега).

Рассчитывается массовая доля по формуле:

где \Large w_ — массовая доля компонента i в смеси,

\Large m_ — масса этого компонента,

m — масса всей смеси.

И сразу разберём на примере:

Задача:

Зимой дороги посыпают песком с солью. Известно, что куча имеет массу 50 кг, и в неё всыпали 1 кг соли и перемешали. Найти массовую долю соли.

Решение:

Масса соли есть \Large m_ по формуле выше. Масса всей смеси нам пока неизвестна, но найти её легко. Просуммируем массу песка и соли:

\Large m = m_<п>+m_<с>= 50 кг + 1 кг = 51 кг

А теперь находим и массовую долю:

\Large w_ <с>= \frac> = 1 кг / 51 кг = 0.0196,

или умножаем на 100% и получаем 1.96%.

Ответ: 0.0196, или 1.96%.

Теперь решим что-то посложнее, и ближе к ЕГЭ.

Задача:

Смешали 200 г раствора глюкозы с массовой концентрацией 25% и 300 г раствора глюкозы с массовой концентрацией 10%. Найти массовую концентрацию полученного раствора, ответ округлить до целых.

Решение:

Обозначим первый и второй растворы соответственно \Large m_ <1>и \Large m_ <2>. Массу полученного после смешения раствора обозначим \Large m и найдём:

\Large m = m_ <1>+ m_ <2>= 200 г + 300 г = 500 г

Массу самой глюкозы в первом и втором растворе обозначим \Large m_ <гл. 1>и \Large m_ <гл. 2>. По формуле (1) это будут наши массы компонентов. Массы растворов нам известны, их массовые концентрации тоже. Как найти массу компонента? Очень просто, находим неизвестное делимое умножением (и не забываем, что проценты — это сотые части):

\Large m_ <гл. 1>= w_<1>\cdot m_ <1>= 0.25 \cdot 200 г = 50 г

\Large m_ <гл. 2>= w_<2>\cdot m_ <2>= 0.1 \cdot 300 г = 30 г

Таким образом, общая масса глюкозы \Large m_ <гл>:

\Large m_ <гл>= m_ <гл. 1>+ m_ <гл. 2>= 50 г + 30 г = 80 г.

Ответ: 80 г.

Задачи на смешение раствором с разными концентрациями одного вещества можно решать с помощью «конверта Пирсона».

Объёмная доля

Часто, когда мы имеем дело с жидкостями и газами, удобно оперировать их объёмами, а не массой. Поэтому, чтобы выражать долю какого-либо компонента в таких смесях (но и в твёрдых тоже вполне можно), пользуются понятием объёмной доли.

Объёмная доля компонента — отношение объёма компонента к сумме объёмов компонентов до смешивания. Объёмная доля измеряется в долях единицы или в процентах. Обычно обозначается греческой буквой φ (фи).

Рассчитывается объёмная доля по формуле:

где \Large \phi_ — объёмная доля компонента B;

\Large V_ — объём компонента B;

\Large \sum> — сумма объёмов всех компонентов.

Здесь важно понимать, что в формулу по возможности подставляем именно сумму объёмов всех компонентов, а не объём смеси, так как при смешивании некоторых жидкостей суммарный объём уменьшается. Так, если смешать литр воды и литр спирта, два литра аквавита мы не получим — будет примерно 1800 мл. В школьных задачах, как правило, это не так важно, но в уме держим и помним.

Задача:

Смешали 6 объёмов воды и 1 объём серной кислоты. Найти объёмную долю кислоты в полученном растворе.

Решение:

Так как объёмная доля — безразмерная величина, объёмы компонентов в условии задачи могут даваться в любых единицах — литрах, стаканах, баррелях, штофах, сексталях — главное, чтобы в одинаковых. Если не так — переводим одни в другие, если одинаковые — решаем. В нашем условии описаны просто некоторые «объёмы», их и подставляем.

Ответ: 14.3 %.

С газами всё обстоит немного интереснее — при не очень больших давлениях и температурах объёмная доля какого-либо газа в газовой смеси равна его мольной доле. (Ведь мы знаем, что молярный объём газов почти равен 22.4 л/моль).

Задача:

Мольная доля кислорода в сухом воздухе составляет 0.21. Найдите объёмную долю азота, если объёмная доля аргона составляет 1%.

Решение:

Внимательный читатель заметил, что мы написали о том, что объёмная и мольная доля для газов в смеси равны. Поэтому, объёмная доля кислорода равна также 0.21, или 21%. Найдём объёмную долю азота:

\Large 100\% — 21\% — 1\% = 78\%.

Ответ: 78%.

Мольная доля

В тех случаях, когда нам известны количества веществ в смеси, мы можем выразить содержание того или иного компонента с помощью мольной доли.

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы. ИЮПАК рекомендует обозначать мольную долю буквой x (а для газов — y).

Находят мольную долю по формуле:

где \Large x_ — мольная доля компонента B;

\Large n_ — количество компонента B, моль;

\Large \sum> — сумма количеств всех компонентов.

Разберём на примере.

Задача:

При неизвестных условиях смешали 3 кг азота, 1 кг кислорода и 0.5 кг гелия. Найти мольную долю каждого компонента полученной газовой смеси.

Решение:

Сначала находим количество каждого из газов (моль):

Затем считаем сумму количеств:

\Large \sum = 107.14 \: моль + 31.25 \: моль + 125 \: моль = 263.39 \: моль

И находим мольную долю каждого компонента:

\Large 40.68 \% + 11.86 \% + 47.46 \% = 100\%.

И радуемся правильному решению.

Ответ: 40.68%, 11.86% , 47.46%.

Молярность (молярная объёмная концентрация)

А сейчас рассмотрим, вероятно, самый часто встречающийся способ выражения концентрации — молярную концентрацию.

Молярная концентрация (молярность, мольность) — количество вещества (число молей) компонента в единице объёма смеси. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л.

Также иногда говорят просто «молярность», и обозначают буквой М. Это значит, что, например, обозначение «0.5 М раствор соляной кислоты» следует понимать как «полумолярный раствор соляной кислоты», или 0.5 моль/л.

Обозначают молярную концентрацию буквой c (латинская «цэ»), или заключают в квадратные скобки вещество, концентрация которого указывается. Например, [Na + ] — концентрация катионов натрия в моль/л. Кстати, слово «моль» в обозначениях не склоняют — 5 моль/л, 3 моль/л.

Рассчитывается молярная концентрация по формуле:

где \Large n_ — количество вещества компонента B, моль;

\Large V — общий объём смеси, л.

Разберём на примере.

Задача:

В пивную кружку зачем-то насыпали 24 г сахара и до краёв заполнили кипятком. А нам зачем-то нужно найти молярную концентрацию сахарозы в полученном сиропе. И кстати, дело происходило в Британии.

Решение:

Молекулярная масса сахарозы равна 342 (посчитайте, может мы ошиблись — C12H22O11). Найдём количество вещества:

Британская пинта (мера объёма такая) равна 0.568 л. Поэтому молярная концентрация находится так:

Ответ: 0.1236 моль/л.

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов).

Обозначается нормальная концентрация как сн, сN, или даже c(feq B). Рассчитывается нормальная концентрация по формуле:

\Large c_ = z \cdot c_ = z \cdot \frac>= \frac<1>> \cdot \frac > \; \;\;\;\; (5)

где \Large n_ — количество вещества компонента В, моль;

V — общий объём смеси, л;

z — число эквивалентности (фактор эквивалентности \Large f_ = 1/z ).

Читайте также:  Измерение силы удара бокс

Значение нормальной концентрации для растворов записывают как «н» или «N», а говорят «нормальность» или «нормальный». Например, раствор с концентрацией 0.25 н — четвертьнормальный раствор.

Разберём на примере.

Задача:

Рассчитать нормальность раствора объёмом 1 л, если в нём содержится 40 г перманганата калия. Раствор приготовили для последующего проведения реакции в нейтральной среде.

Решение:

В нейтральной среде перманганат калия восстанавливается до оксида марганца (IV). При этом в окислительно-восстановительной реакции 1 атом марганца принимает 3 электрона (проверьте на любой окислительно-восстановительной реакции перманганата калия с образованием оксида, расставив степени окисления), что означает, что число эквивалентности будет равно 3. Для расчёта концентрации по формуле (5) выше нам ещё не хватает количества вещества KMnO4. найдём его:

Теперь считаем нормальную концентрацию:

Ответ: 0.759 моль-экв/л.

Таким образом, заметим важное на практике свойство — нормальная концентрация больше молярной в z раз.

Мы не будем рассматривать в данной статье особо экзотические способы выражения концентраций, о них вы можете почитать в литературе или интернете. Поэтому расскажем ещё об одном способе, и на нём остановимся — массовая концентрация.

Моляльная концентрация

Моляльная концентрация (моляльность, молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя.

Измеряется моляльная концентрация в молях на кг. Как и с молярной концентрацией, иногда говорят «моляльность», то есть раствор с концентрацией 0.25 моль/кг можно назвать четвертьмоляльным.

Находится моляльная концентрация по формуле:

где \Large n_ — количество вещества компонента B, моль;

Казалось бы, зачем нужна такая единица измерения для выражения концентрации? Так вот, у моляльной концентрации есть одно важное свойство — она не зависит от температуры, в отличие, например, от молярной. Подумайте, почему?

Массовая концентрация

Массовая концентрация — отношение массы растворённого вещества к объёму раствора. По рекомендации ИЮПАК, обозначается символом γ или ρ.

Находится массовая концентрация по формуле:

где \Large m_ — масса растворенного вещества, г;

\Large V — общий объём смеси, л.

В системе СИ выражается в кг/м 3 .

Разберём на примере.

Задача:

Рассчитать массовую концентрацию перманганата калия по условиям предыдущей задачи.

Решение:

Решение будет совсем простым. Считаем:

Ответ: 40 г/л.

Также в аналитической химии пользуются понятием титра по растворенному веществу. Титр по растворенному веществу находится так же, как и массовая концентрация, но выражается в г/мл. Легко догадаться, что в задаче выше титр будет равен 0.04 г/мл (для этого надо умножить наш ответ на 0.001 мл/л, проверьте). Кстати, обозначается титр буквой Т.

А теперь, как обещали, табличка с формулами перевода одной концентрации в другую.

Таблица перевода одной концентрации в другую.

В таблице слева — ВО ЧТО переводим, сверху — ЧТО. Если стоит знак «=», то, естественно, эти величины равны.

Источник

МОЛЯРНЫЕ И ОБЪЕМНЫЕ ДОЛИ

Объёмная доля компонента — отношение объёма определяемого компонента к объему смеси (определяемый компонент + газ разбавитель). Объёмная доля измеряется в долях или в процентах (%, млн -1 ). Значение концентрации компонента газовой смеси в объёмных долях указывается при определённом давлении и температуре, как правило это, так называемые, «нормальные условия».

Молярная доля — отношение количества молей определяемого компонента к количеству молей смеси (определяемый компонент + газ разбавитель). Молярная доля тоже выражается в долях или процентах (%, млн -1 ). Значения концентрации компонента газовой смеси, выраженной в молярных долях, не зависит от давления и температуры.

ПГС выпускаются в соответствии с «Государственной поверочной схемой для средств измерений содержания компонентов в газовых и газоконденсатных средах», утвержденной приказом Росстандарта от 14.12.2018 № 2664, и на основании ТУ 2114-009-53373468-2015, в которых приведены все требования к изготовлению и аттестации. При производстве фактически происходит передача единицы от первичного эталона ГЭТ-154-2019 к рабочим средствам измерения. Передача производится через весовые (гравиметрические) эталоны. При производстве весовых эталонов расчёт содержания компонентов производится только в единицах молярных долей. Пересчёт молярных долей в объёмные будет вносить дополнительную погрешность, которая зависит, прежде всего, от температуры и давления смеси.

Исторически сложилось так, что приборы газового анализа, используемые на производствах, имеют градуировку шкал в объёмных долях независимо от определяемого компонента, диапазона концентраций, температуры и давления, при которых происходит работа приборов.

Такая ситуация, кроме исторических предпосылок, связана с тем, что молярные и объёмные доли для большинства используемых газов и диапазонов концентраций, практически совпадают. Значимые различия появляются при измерении газовых смесей с высокими концентрациями примесей сложных молекул, свойства которых значительно отличаются от свойств идеального газа.

В заказах, получаемых нашим производством, для всех газовых смесей отличие молярной концентрации компонентов от объёмной значительно меньше погрешности аттестации, приведённой в паспорте. Поэтому величины молярной и объёмной концентраций компонентов, в большинстве случаев численно совпадают.

Источник

Объемная доля газов в смеси

Объемная доля газов в смеси

1. Ознакомьтесь, запишите определение и формулу для нахождения объемной доли газа:

В состав воздуха входит несколько различных газов: кислород, азот, углекислый газ, благородные газы, водяные пары и некоторые другие вещества. Содержание каждого из этих газов в чистом воздухе строго определенно.

Для того чтобы выразить состав смеси газов в цифрах, т. е. количественно, используют особую величину, которую называют объемной долей газов в смеси.

Объемную долю газа в смеси обозначают греческой буквой – «фи».

Объемной долей газа в смеси называют отношение объема данного газа к общему объему смеси:

Что же показывает объемная доля газа в смеси или, как говорят, какой физический смысл этой величины? Объемная доля газа показывает, какую часть общего объема смеси занимает данный газ.

Если бы нам удалось разделить 100 л воздуха на отдельные газообразные компоненты, мы получили бы около 78 л азота, 21 л кислорода, 30 мл углекислого газа, в оставшемся объеме содержались бы так называемые благородные газы (главным образом аргон) и некоторые другие (рис. 62).

Рис. 62.
Состав атмосферного воздуха

Рассчитаем объемные доли этих газов в воздухе:

Нетрудно заметить, что сумма объемных долей всех газов в смеси всегда равна 1, или 100%:

(азота) + (кисл.) + (угл. газа) + (др. газов) = 78% + 21% + 0,03% + 0,97% = 100%.

Тот воздух, который мы выдыхаем, гораздо беднее кислородом (его объемная доля снижается до 16%), зато содержание углекислого газа возрастает до 4%. Такой воздух для дыхания уже непригоден. Вот почему помещение, в котором находится много людей, надо регулярно проветривать.

В химии на производстве чаще приходится сталкиваться с обратной задачей: определять объем газа в смеси по известной объемной доле.

2. Рассмотрите примеры задач

Пример. Вычислите объем кислорода, содержащегося в 500 л воздуха.

Из определения объемной доли газа в смеси выразим объем кислорода:

V(кисл.) = V(возд.)•(кисл.).

Подставим в уравнение числа и рассчитаем объем кислорода:

V(кисл.) = 500 (л)•0,21 = 105 л.

Кстати, для приближенных расчетов объемную долю кислорода в воздухе можно принять равной 0,2, или 20%.

При расчете объемных долей газов в смеси можно воспользоваться маленькой хитростью. Зная, что сумма объемных долей равна 100%, для «последнего» газа в смеси эту величину можно рассчитать по-другому.

Задача. Анализ атмосферы Венеры показал, что в 50 мл венерианского «воздуха» содержится 48,5 мл углекислого газа и 1,5 мл азота. Рассчитайте объемные доли газов в атмосфере планеты.

V(угл. газа) = 48,5 мл,

(угл. газа),

(азота).

Рассчитаем объемную долю углекислого газа в смеси. По определению:

Вычислим объемную долю азота в смеси, зная, что сумма объемных долей газов в смеси равна 100%:

(угл. газа) + (азота) = 100%,

(азота) = 100% – (угл. газа) = 100% – 97% = 3%.

Ответ. (угл. газа) = 97%, (азота) = 3%.

С помощью какой величины измеряют содержание компонентов в смесях другого типа, например в растворах? Понятно, что в этом случае пользоваться объемной долей неудобно. На помощь приходит новая величина, о которой вы узнаете на следующем уроке.

3. Выполните домашнее задание:

1. Что такое объемная доля компонента в газовой смеси?

2. Объемная доля аргона в воздухе 0,9%. Какой объем воздуха необходим для получения 5 л аргона?

3. При разделении воздуха было получено 224 л азота. Какие объемы кислорода и углекислого газа были получены при этом?

4. Объемная доля метана в природном газе составляет 92%. Какой объем этой газовой смеси будет содержать 4,6 мл метана?

5. Смешали 6 л кислорода и 2 л углекислого газа. Найдите объемную долю каждого газа в полученной смеси.

Источник

Объёмная доля

Объёмная доля (иногда объёмная часть) — безразмерная величина, равная отношению объёма какого-то вещества в смеси к объёму всей смеси. Обозначается буквой φ.

Применяется в основном к газам.

Содержание

Смысл величины

Объёмная доля вычисляется по формуле:

,

  • V1 — объём растворённого вещества в единицах объёма;
  • V — общий объём раствора в тех же единицах.

Объёмная доля в химии

В химии величина используется в основном для газов, потому что объемная доля газовой смеси при н.у. равна его молярной концентрации.
Принято выражать объёмную долю в процентах.

См. также

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое «Объёмная доля» в других словарях:

объёмная доля — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN volume fraction … Справочник технического переводчика

ОБЪЁМНАЯ ДОЛЯ — безразмерная физ. величина, характеризующая состав смеси и равная отношению объёма компонента смеси, приведённого к физ. условиям смеси, к объёму смеси. О. д. выражается в долях единицы, например в сотых (проценты), тысячных (промилле),… … Большой энциклопедический политехнический словарь

объёмная доля нефти в продукции скважины в данный момент времени — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN oil holdup … Справочник технического переводчика

пористость объёмная — Доля пустот в объёме мембраны. [РХТУ им. Д.И. Менделеева, кафедра мембранной технологии] Тематики мембранные технологии … Справочник технического переводчика

ДОЛЯ — 1) рус. ед. массы, применявшаяся до введения метрической системы мер. 1 Д. равна 1/96 золотника, или 44,434 9 мг. Д. применялась и в качестве ед. веса (1 Д.= 44,4349 мгс = = 0,435 758 мН). 2) Часть целого, например массовая доля, молярная доля,… … Большой энциклопедический политехнический словарь

Миллиардная доля — Миллиардная доля единица измерения концентрации, и других относительных величин, миллиардная доля аналогична по смыслу проценту или промилле. Обозначается сокращением млрд−1 или ppb (англ. Parts per billion, читается «пи пи би»,… … Википедия

Миллионная доля — У этого термина существуют и другие значения, см. Ppm. Миллионная доля, пропромилле, (ppm) аббревиатура обозначает миллионную долю каких либо относительных величин (1•10−6 от базового показателя). Аналогична по смыслу проценту или промилле … Википедия

Концентрация растворов — Концентрация величина, характеризующая количественный состав раствора. Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л … Википедия

Читайте также:  Метод измерения массы весы

Концентрация раствора — Концентрация величина, характеризующая количественный состав раствора. Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л) … Википедия

Моляльность — Концентрация величина, характеризующая количественный состав раствора. Согласно правилам ИЮПАК, концентрацией растворённого вещества (не раствора) называют отношение количества растворённого вещества или его массы к объёму раствора (моль/л, г/л) … Википедия

Источник

​Понятие ppm газа.

PPM что это?

PPM — это м ера концентрации вещества в определенном объёме!

Мера концентрации в жидкости и в газе.

Где наше с вами вещество это 1 миллион частиц.

Тогда получается что мера PPM это как пропорция, которая показывает сколько частиц на миллион вещества занимает определяемое в PPM единицах примесь к основному веществу.

Концентрация, если мы говорим о газовых или жидких средах это содержание растворенного вещества в каком-то количестве или объеме раствора.

PPM выражает газовые и жидкие среды.

Это не обязательно воздуха или газа — речь может идти о любом веществе, где измеряются примеси.

Например в PPM измеряются миллионное доли примесей в воде — иными словами минерализация воды.

По статистики в PPM удобно выражать газовые примеси.

Единицы измерения концентраций похожие на PPM

Отметим так же, что существуют и другие меры концентрации веществ.

Такие как миллиардная доля ppb.


Есть более известная мера концентраций, это промилле — это одна тысячная доля в единице вещества, или же 1/10 доля от % процента содержания.


Что бы перевести единицы измерения PPM в другие величины можно воспользоваться конвертером газовых величин.



PPM газа это!

В измерения количества молекул газа в единице объёма воздуха полноценно ввели понятие объемных ppm величин, потому что для газовых концентраций это удобно.

Это миллионная единица измерения количественной концентрации газа.

P- part (часть ).

P- per ( указание единиц в системе измерений ).

M — million (миллионная).

Приборы, которые способны измерять в миллионных долях газовые примеси в воздухе называются газовыми анализаторами.

Их точности достаточно, что бы увидеть в помещении даже 5-7 нанограм ртути на 1 кубический метр.

При том, что нормы ПДК для этого металла =300 нано грам.

Что такое ПДК газа.

ПДК или -предельно допустимая концентрация , это возможность привести к безопасным нормам различные концентрации веществ в воздухе.

Речь о ПДК газов и просто расстваренных в воздухе частиц.

Например ртуть это не газ, но ее ПДК в воздухе пропасано во всех справочниках СанПинА.

Концентрация ppm

1 ррm считается одной молекулой на милионную часть от постоянной объёма занимаемого газа.

Дляуглекислого газа (CO² ) норма ppm равна 400.

Это значит что от обьема 1 М³ воздуха углекислый газ занимает 400 мл.

Если бы содержание CO² повысилось бы до 10000 ppm тов % от объёмной доли воздуха в 1 М³ означало бы содержание углекислого газа в 1%.

Влияние PPM некоторых отравляющий веществ.

Для различных загрязнителей ( отравляющих газов ) можно объяснить состояния человека и влияние отравителя на здоровье.

Какие ощущения складываются при различных концентрациях, измеряемых в ppm, у людей.

Концентрации СО( угарного газа ).

При концентрации в 20 ppm= 0,002% можно ощутить лёгкое головокружение если вдыхать такой воздух в течение восьми часов.

Вдыхая 40 ppm =0.004% СО в течении 6 часов возникает головная боль.

100 ppm =0,01% начинается легкая головная боль после двух часов экспозиции CO.

200 ppm = 0,02% головная боль после двух часов усиливается.

400 ppm =0,04%- сильнач головная боль после одного часа вдыхания.


При концентрациях в 1000 ppm 0,1% чувствуется головокружение и последующая тошнота.

Начинаются судороги после 30 минут экспозиции угарным газом.


1200 ppm=0.12% CO приводит к потере сознания человека через 60 минут.

1600 ppm 0,16% после 15 минут начинается головная боль, головокружение, прыгает пульс и наступает летальный исход з а 2 последующих часа.

Концентрация 3200 ppm = 0,32% головная боль, головокружение, тошнота после 5 минут вдыхания и смерть через 30 минут.

6000 ppm =0,6% головная боль, головокружение через 2 минуты экспозиции а далее начинаются нервные судороги с последующей остановкой дыхания. При таких концентрация летальный исход наступает в течении и смерть через 15-25 минут.

При концентрации угарного газа равной 12800 ppm 1,28% приводят к потере сознания 10 секунд пребывания и летальный исход за время от 90 до 180 секунд.

ppm в объеме воздуха.

С обьемными долями стало понятно.

Но обьемные доли газов нельзя путать с массовыми долями.

Так не редкой ошибкой является утверждение что 1 кубометр воздуха весит 1 кг. Приблизительно это значение верно, но в действительности оно зависит от состава воздуха.

Часто 1 мг вещества, приведённый к 1 м³ газа при нормальных условиях, тоже называют ppm. Это верно лишь отчасти, так как масса 1 м³ воздуха близка к 1 кг (точнее, 1,29 кг), но неверно расширять это определение на 1 м³ произвольного газа. .

Измерение ppm солей в воде ( TDS воды).

Концентрации веществ, которые можно измерить в воде с помощью карманного электронного ppm метра помогают контролировать качество питьевой воды.

TDS (Total Dissolved Solids) — это понятие применяется к жидкостям при измерении концентраций солей.

По своей сути TDS и PPM это одно и тоже.

Источник

Объемная доля газов в смеси

Объемная доля газов в смеси

1. Ознакомьтесь, запишите определение и формулу для нахождения объемной доли газа:

В состав воздуха входит несколько различных газов: кислород, азот, углекислый газ, благородные газы, водяные пары и некоторые другие вещества. Содержание каждого из этих газов в чистом воздухе строго определенно.

Для того чтобы выразить состав смеси газов в цифрах, т. е. количественно, используют особую величину, которую называют объемной долей газов в смеси.

Объемную долю газа в смеси обозначают греческой буквой – «фи».

Объемной долей газа в смеси называют отношение объема данного газа к общему объему смеси:

Что же показывает объемная доля газа в смеси или, как говорят, какой физический смысл этой величины? Объемная доля газа показывает, какую часть общего объема смеси занимает данный газ.

Если бы нам удалось разделить 100 л воздуха на отдельные газообразные компоненты, мы получили бы около 78 л азота, 21 л кислорода, 30 мл углекислого газа, в оставшемся объеме содержались бы так называемые благородные газы (главным образом аргон) и некоторые другие (рис. 62).

Рис. 62.
Состав атмосферного воздуха

Рассчитаем объемные доли этих газов в воздухе:

Нетрудно заметить, что сумма объемных долей всех газов в смеси всегда равна 1, или 100%:

(азота) + (кисл.) + (угл. газа) + (др. газов) = 78% + 21% + 0,03% + 0,97% = 100%.

Тот воздух, который мы выдыхаем, гораздо беднее кислородом (его объемная доля снижается до 16%), зато содержание углекислого газа возрастает до 4%. Такой воздух для дыхания уже непригоден. Вот почему помещение, в котором находится много людей, надо регулярно проветривать.

В химии на производстве чаще приходится сталкиваться с обратной задачей: определять объем газа в смеси по известной объемной доле.

2. Рассмотрите примеры задач

Пример. Вычислите объем кислорода, содержащегося в 500 л воздуха.

Из определения объемной доли газа в смеси выразим объем кислорода:

V(кисл.) = V(возд.)•(кисл.).

Подставим в уравнение числа и рассчитаем объем кислорода:

V(кисл.) = 500 (л)•0,21 = 105 л.

Кстати, для приближенных расчетов объемную долю кислорода в воздухе можно принять равной 0,2, или 20%.

При расчете объемных долей газов в смеси можно воспользоваться маленькой хитростью. Зная, что сумма объемных долей равна 100%, для «последнего» газа в смеси эту величину можно рассчитать по-другому.

Задача. Анализ атмосферы Венеры показал, что в 50 мл венерианского «воздуха» содержится 48,5 мл углекислого газа и 1,5 мл азота. Рассчитайте объемные доли газов в атмосфере планеты.

V(угл. газа) = 48,5 мл,

(угл. газа),

(азота).

Рассчитаем объемную долю углекислого газа в смеси. По определению:

Вычислим объемную долю азота в смеси, зная, что сумма объемных долей газов в смеси равна 100%:

(угл. газа) + (азота) = 100%,

(азота) = 100% – (угл. газа) = 100% – 97% = 3%.

Ответ. (угл. газа) = 97%, (азота) = 3%.

С помощью какой величины измеряют содержание компонентов в смесях другого типа, например в растворах? Понятно, что в этом случае пользоваться объемной долей неудобно. На помощь приходит новая величина, о которой вы узнаете на следующем уроке.

3. Выполните домашнее задание:

1. Что такое объемная доля компонента в газовой смеси?

2. Объемная доля аргона в воздухе 0,9%. Какой объем воздуха необходим для получения 5 л аргона?

3. При разделении воздуха было получено 224 л азота. Какие объемы кислорода и углекислого газа были получены при этом?

4. Объемная доля метана в природном газе составляет 92%. Какой объем этой газовой смеси будет содержать 4,6 мл метана?

5. Смешали 6 л кислорода и 2 л углекислого газа. Найдите объемную долю каждого газа в полученной смеси.

Источник

МОЛЯРНЫЕ И ОБЪЕМНЫЕ ДОЛИ

Объёмная доля компонента — отношение объёма определяемого компонента к объему смеси (определяемый компонент + газ разбавитель). Объёмная доля измеряется в долях или в процентах (%, млн -1 ). Значение концентрации компонента газовой смеси в объёмных долях указывается при определённом давлении и температуре, как правило это, так называемые, «нормальные условия».

Молярная доля — отношение количества молей определяемого компонента к количеству молей смеси (определяемый компонент + газ разбавитель). Молярная доля тоже выражается в долях или процентах (%, млн -1 ). Значения концентрации компонента газовой смеси, выраженной в молярных долях, не зависит от давления и температуры.

ПГС выпускаются в соответствии с «Государственной поверочной схемой для средств измерений содержания компонентов в газовых и газоконденсатных средах», утвержденной приказом Росстандарта от 14.12.2018 № 2664, и на основании ТУ 2114-009-53373468-2015, в которых приведены все требования к изготовлению и аттестации. При производстве фактически происходит передача единицы от первичного эталона ГЭТ-154-2019 к рабочим средствам измерения. Передача производится через весовые (гравиметрические) эталоны. При производстве весовых эталонов расчёт содержания компонентов производится только в единицах молярных долей. Пересчёт молярных долей в объёмные будет вносить дополнительную погрешность, которая зависит, прежде всего, от температуры и давления смеси.

Исторически сложилось так, что приборы газового анализа, используемые на производствах, имеют градуировку шкал в объёмных долях независимо от определяемого компонента, диапазона концентраций, температуры и давления, при которых происходит работа приборов.

Такая ситуация, кроме исторических предпосылок, связана с тем, что молярные и объёмные доли для большинства используемых газов и диапазонов концентраций, практически совпадают. Значимые различия появляются при измерении газовых смесей с высокими концентрациями примесей сложных молекул, свойства которых значительно отличаются от свойств идеального газа.

В заказах, получаемых нашим производством, для всех газовых смесей отличие молярной концентрации компонентов от объёмной значительно меньше погрешности аттестации, приведённой в паспорте. Поэтому величины молярной и объёмной концентраций компонентов, в большинстве случаев численно совпадают.

Читайте также:  Чем может характеризоваться воспроизводимость измерений

Источник

Концентрации и доли. Как перевести одну концентрацию в другую.

При решении химических задач, при расчётах на работе, да и просто в жизни иногда приходится рассчитывать концентрации. Неважно, будет это школьная теоретическая задача, необходимость приготовить электролит для аккумулятора автомобиля, надобность узнать количество сахара для компота — все расчёты концентраций выполняются по известным формулам, которых не так много. Однако, с этим часто возникают трудности.

Прочитав эту статью, Вы научитесь легко рассчитывать концентрации веществ и при надобности играючи переводить одну концентрацию в другую. В статье приводятся примеры задач с решениями, а в конце приведём справочную табличку с формулами, которую можно распечатать и держать под рукой.

Массовая доля

Начнём с простого, но в то же время нужного способа выражения концентрации компонента в смеси — массовой доли.

Массовая доля есть отношение массы данного компонента к сумме масс всех компонентов. Обозначать её принято буквой w или ω (омега).

Рассчитывается массовая доля по формуле:

где \Large w_ — массовая доля компонента i в смеси,

\Large m_ — масса этого компонента,

m — масса всей смеси.

И сразу разберём на примере:

Задача:

Зимой дороги посыпают песком с солью. Известно, что куча имеет массу 50 кг, и в неё всыпали 1 кг соли и перемешали. Найти массовую долю соли.

Решение:

Масса соли есть \Large m_ по формуле выше. Масса всей смеси нам пока неизвестна, но найти её легко. Просуммируем массу песка и соли:

\Large m = m_<п>+m_<с>= 50 кг + 1 кг = 51 кг

А теперь находим и массовую долю:

\Large w_ <с>= \frac> = 1 кг / 51 кг = 0.0196,

или умножаем на 100% и получаем 1.96%.

Ответ: 0.0196, или 1.96%.

Теперь решим что-то посложнее, и ближе к ЕГЭ.

Задача:

Смешали 200 г раствора глюкозы с массовой концентрацией 25% и 300 г раствора глюкозы с массовой концентрацией 10%. Найти массовую концентрацию полученного раствора, ответ округлить до целых.

Решение:

Обозначим первый и второй растворы соответственно \Large m_ <1>и \Large m_ <2>. Массу полученного после смешения раствора обозначим \Large m и найдём:

\Large m = m_ <1>+ m_ <2>= 200 г + 300 г = 500 г

Массу самой глюкозы в первом и втором растворе обозначим \Large m_ <гл. 1>и \Large m_ <гл. 2>. По формуле (1) это будут наши массы компонентов. Массы растворов нам известны, их массовые концентрации тоже. Как найти массу компонента? Очень просто, находим неизвестное делимое умножением (и не забываем, что проценты — это сотые части):

\Large m_ <гл. 1>= w_<1>\cdot m_ <1>= 0.25 \cdot 200 г = 50 г

\Large m_ <гл. 2>= w_<2>\cdot m_ <2>= 0.1 \cdot 300 г = 30 г

Таким образом, общая масса глюкозы \Large m_ <гл>:

\Large m_ <гл>= m_ <гл. 1>+ m_ <гл. 2>= 50 г + 30 г = 80 г.

Ответ: 80 г.

Задачи на смешение раствором с разными концентрациями одного вещества можно решать с помощью «конверта Пирсона».

Объёмная доля

Часто, когда мы имеем дело с жидкостями и газами, удобно оперировать их объёмами, а не массой. Поэтому, чтобы выражать долю какого-либо компонента в таких смесях (но и в твёрдых тоже вполне можно), пользуются понятием объёмной доли.

Объёмная доля компонента — отношение объёма компонента к сумме объёмов компонентов до смешивания. Объёмная доля измеряется в долях единицы или в процентах. Обычно обозначается греческой буквой φ (фи).

Рассчитывается объёмная доля по формуле:

где \Large \phi_ — объёмная доля компонента B;

\Large V_ — объём компонента B;

\Large \sum> — сумма объёмов всех компонентов.

Здесь важно понимать, что в формулу по возможности подставляем именно сумму объёмов всех компонентов, а не объём смеси, так как при смешивании некоторых жидкостей суммарный объём уменьшается. Так, если смешать литр воды и литр спирта, два литра аквавита мы не получим — будет примерно 1800 мл. В школьных задачах, как правило, это не так важно, но в уме держим и помним.

Задача:

Смешали 6 объёмов воды и 1 объём серной кислоты. Найти объёмную долю кислоты в полученном растворе.

Решение:

Так как объёмная доля — безразмерная величина, объёмы компонентов в условии задачи могут даваться в любых единицах — литрах, стаканах, баррелях, штофах, сексталях — главное, чтобы в одинаковых. Если не так — переводим одни в другие, если одинаковые — решаем. В нашем условии описаны просто некоторые «объёмы», их и подставляем.

Ответ: 14.3 %.

С газами всё обстоит немного интереснее — при не очень больших давлениях и температурах объёмная доля какого-либо газа в газовой смеси равна его мольной доле. (Ведь мы знаем, что молярный объём газов почти равен 22.4 л/моль).

Задача:

Мольная доля кислорода в сухом воздухе составляет 0.21. Найдите объёмную долю азота, если объёмная доля аргона составляет 1%.

Решение:

Внимательный читатель заметил, что мы написали о том, что объёмная и мольная доля для газов в смеси равны. Поэтому, объёмная доля кислорода равна также 0.21, или 21%. Найдём объёмную долю азота:

\Large 100\% — 21\% — 1\% = 78\%.

Ответ: 78%.

Мольная доля

В тех случаях, когда нам известны количества веществ в смеси, мы можем выразить содержание того или иного компонента с помощью мольной доли.

Мольная доля — отношение количества молей данного компонента к общему количеству молей всех компонентов. Мольную долю выражают в долях единицы. ИЮПАК рекомендует обозначать мольную долю буквой x (а для газов — y).

Находят мольную долю по формуле:

где \Large x_ — мольная доля компонента B;

\Large n_ — количество компонента B, моль;

\Large \sum> — сумма количеств всех компонентов.

Разберём на примере.

Задача:

При неизвестных условиях смешали 3 кг азота, 1 кг кислорода и 0.5 кг гелия. Найти мольную долю каждого компонента полученной газовой смеси.

Решение:

Сначала находим количество каждого из газов (моль):

Затем считаем сумму количеств:

\Large \sum = 107.14 \: моль + 31.25 \: моль + 125 \: моль = 263.39 \: моль

И находим мольную долю каждого компонента:

\Large 40.68 \% + 11.86 \% + 47.46 \% = 100\%.

И радуемся правильному решению.

Ответ: 40.68%, 11.86% , 47.46%.

Молярность (молярная объёмная концентрация)

А сейчас рассмотрим, вероятно, самый часто встречающийся способ выражения концентрации — молярную концентрацию.

Молярная концентрация (молярность, мольность) — количество вещества (число молей) компонента в единице объёма смеси. Молярная концентрация в системе СИ измеряется в моль/м³, однако на практике её гораздо чаще выражают в моль/л или ммоль/л.

Также иногда говорят просто «молярность», и обозначают буквой М. Это значит, что, например, обозначение «0.5 М раствор соляной кислоты» следует понимать как «полумолярный раствор соляной кислоты», или 0.5 моль/л.

Обозначают молярную концентрацию буквой c (латинская «цэ»), или заключают в квадратные скобки вещество, концентрация которого указывается. Например, [Na + ] — концентрация катионов натрия в моль/л. Кстати, слово «моль» в обозначениях не склоняют — 5 моль/л, 3 моль/л.

Рассчитывается молярная концентрация по формуле:

где \Large n_ — количество вещества компонента B, моль;

\Large V — общий объём смеси, л.

Разберём на примере.

Задача:

В пивную кружку зачем-то насыпали 24 г сахара и до краёв заполнили кипятком. А нам зачем-то нужно найти молярную концентрацию сахарозы в полученном сиропе. И кстати, дело происходило в Британии.

Решение:

Молекулярная масса сахарозы равна 342 (посчитайте, может мы ошиблись — C12H22O11). Найдём количество вещества:

Британская пинта (мера объёма такая) равна 0.568 л. Поэтому молярная концентрация находится так:

Ответ: 0.1236 моль/л.

Нормальная концентрация (молярная концентрация эквивалента, «нормальность»)

Нормальная концентрация — количество эквивалентов данного вещества в 1 литре смеси. Нормальную концентрацию выражают в моль-экв/л или г-экв/л (имеется в виду моль эквивалентов).

Обозначается нормальная концентрация как сн, сN, или даже c(feq B). Рассчитывается нормальная концентрация по формуле:

\Large c_ = z \cdot c_ = z \cdot \frac>= \frac<1>> \cdot \frac > \; \;\;\;\; (5)

где \Large n_ — количество вещества компонента В, моль;

V — общий объём смеси, л;

z — число эквивалентности (фактор эквивалентности \Large f_ = 1/z ).

Значение нормальной концентрации для растворов записывают как «н» или «N», а говорят «нормальность» или «нормальный». Например, раствор с концентрацией 0.25 н — четвертьнормальный раствор.

Разберём на примере.

Задача:

Рассчитать нормальность раствора объёмом 1 л, если в нём содержится 40 г перманганата калия. Раствор приготовили для последующего проведения реакции в нейтральной среде.

Решение:

В нейтральной среде перманганат калия восстанавливается до оксида марганца (IV). При этом в окислительно-восстановительной реакции 1 атом марганца принимает 3 электрона (проверьте на любой окислительно-восстановительной реакции перманганата калия с образованием оксида, расставив степени окисления), что означает, что число эквивалентности будет равно 3. Для расчёта концентрации по формуле (5) выше нам ещё не хватает количества вещества KMnO4. найдём его:

Теперь считаем нормальную концентрацию:

Ответ: 0.759 моль-экв/л.

Таким образом, заметим важное на практике свойство — нормальная концентрация больше молярной в z раз.

Мы не будем рассматривать в данной статье особо экзотические способы выражения концентраций, о них вы можете почитать в литературе или интернете. Поэтому расскажем ещё об одном способе, и на нём остановимся — массовая концентрация.

Моляльная концентрация

Моляльная концентрация (моляльность, молярная весовая концентрация) — количество растворённого вещества (число моль) в 1000 г растворителя.

Измеряется моляльная концентрация в молях на кг. Как и с молярной концентрацией, иногда говорят «моляльность», то есть раствор с концентрацией 0.25 моль/кг можно назвать четвертьмоляльным.

Находится моляльная концентрация по формуле:

где \Large n_ — количество вещества компонента B, моль;

Казалось бы, зачем нужна такая единица измерения для выражения концентрации? Так вот, у моляльной концентрации есть одно важное свойство — она не зависит от температуры, в отличие, например, от молярной. Подумайте, почему?

Массовая концентрация

Массовая концентрация — отношение массы растворённого вещества к объёму раствора. По рекомендации ИЮПАК, обозначается символом γ или ρ.

Находится массовая концентрация по формуле:

где \Large m_ — масса растворенного вещества, г;

\Large V — общий объём смеси, л.

В системе СИ выражается в кг/м 3 .

Разберём на примере.

Задача:

Рассчитать массовую концентрацию перманганата калия по условиям предыдущей задачи.

Решение:

Решение будет совсем простым. Считаем:

Ответ: 40 г/л.

Также в аналитической химии пользуются понятием титра по растворенному веществу. Титр по растворенному веществу находится так же, как и массовая концентрация, но выражается в г/мл. Легко догадаться, что в задаче выше титр будет равен 0.04 г/мл (для этого надо умножить наш ответ на 0.001 мл/л, проверьте). Кстати, обозначается титр буквой Т.

А теперь, как обещали, табличка с формулами перевода одной концентрации в другую.

Таблица перевода одной концентрации в другую.

В таблице слева — ВО ЧТО переводим, сверху — ЧТО. Если стоит знак «=», то, естественно, эти величины равны.

Источник