Единица измерения периода полураспада

Содержание
  1. Полураспад
  2. Содержание
  3. Пример
  4. Парциальный период полураспада
  5. Стабильность периода полураспада
  6. Период полураспада
  7. Содержание
  8. Пример
  9. Пример 2
  10. Парциальный период полураспада
  11. Стабильность периода полураспада
  12. Период полураспада
  13. Пример [ править | править код ]
  14. Парциальный период полураспада [ править | править код ]
  15. Полураспад
  16. Содержание
  17. Пример
  18. Парциальный период полураспада
  19. Стабильность периода полураспада
  20. Период полураспада
  21. Содержание
  22. Пример
  23. Пример 2
  24. Парциальный период полураспада
  25. Стабильность периода полураспада
  26. Период полураспада радиоактивных элементов — что это такое и как его определяют? Формула периода полураспада
  27. Вводим характеристики радиоактивности
  28. Временной интервал в радиоактивности
  29. Что такое период полураспада?
  30. Таблица: «Полупериод распада отдельных изотопов»
  31. Пример определения для изотопа
  32. Закон радиоактивного распада (ЗРР)
  33. Следствия закона
  34. Границы применимости закона
  35. Время жизни атома
  36. Использование периода полураспада
  37. Цепочки радиоактивного превращения
  38. Самый дорогой металл
  39. Применение в энергетике
  40. Возраст Земли

Полураспад

Пери́од полураспа́да квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т. д.) — время T½, в течение которого система распадается с вероятностью 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада количество выживших частиц уменьшится в среднем в 2 раза. Термин применим только к экспоненциально распадающимся системам.

Не следует считать, что за два периода полураспада распадутся все частицы, взятые в начальный момент. Поскольку каждый период полураспада уменьшает число выживших частиц вдвое, за время 2T½ останется четверть от начального числа частиц, за 3T½ — одна восьмая и т. д. Вообще, доля выживших частиц (или, точнее, вероятность выживания p для данной частицы) зависит от времени t следующим образом:

.

Период полураспада, среднее время жизни τ и константа распада λ связаны следующими соотношениями:

.

Поскольку ln2 = 0,693… , период полураспада примерно на 30 % короче, чем время жизни.

Иногда период полураспада называют также полупериодом распада.

Содержание

Пример

Если обозначить для данного момента времени число ядер способных к радиоактивному превращению через N, а промежуток времени через t2t1, где t1 и t2 — достаточно близкие моменты времени (t1 9 и 1,389*10 10 лет. Легко подсчитать число атомов урана 238, испытывающих превращение в данном количестве урана, например, в одном килограмме в течение одной секунды. Количество любого элемента в граммах, численно равное атомному весу, содержит, как известно, 6,02*10 23 атомов. Поэтому согласно приведённой выше формуле n = KN(t2t1) найдём число атомов урана, распадающихся в одном килограмме в одну секунду, имея ввиду, что в году 365*24*60*60 секунд,

.

Вычисления приводят к тому, что в одном килограмме урана в течение одной секунды распадается двенадцать миллионов атомов. Несмотря на такое огромное число, всё же скорость превращения ничтожно мала. Действительно, в секунду распадается следующая часть урана:

.

Таким образом, из наличного количества урана в одну секунду распадается его доля, равная

.

Обращаясь опять к основному закону радиоактивного распада KN(t2t1), то есть к тому факту, что из наличного числа атомных ядер в единицу времени распадается всего одна и та же их доля и, имея к тому же ввиду полную независимость атомных ядер в каком-либо веществе друг от друга, можно сказать, что этот закон является статистическим в том смысле, что он не указывает какие именно атомные ядра подвергнутся распаду в данный отрезок времени, а лишь говорит об их числе. Несомненно, этот закон сохраняет силу лишь для того случая, когда наличное число ядер очень велико. Некоторые из атомных ядер распадутся в ближайший момент, в то время как другие ядра будут претерпевать превращения значительно позднее, поэтому когда наличное число радиоактивных атомных ядер сравнительно невелико, закон радиоактивного распада может и не выполняться во всей строгости.

Парциальный период полураспада

Если система с периодом полураспада T1/2 может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада. Пусть вероятность распада по i-му каналу (коэффициент ветвления) равна pi. Тогда парциальный период полураспада по i-му каналу равен

.

Парциальный имеет смысл периода полураспада, который был бы у данной системы, если «выключить» все каналы распада, кроме i-го. Так как по определению , то для любого канала распада.

Стабильность периода полураспада

Во всех наблюдавшихся случаях (кроме некоторых изотопов, распадающихся путём электронного захвата) период полураспада был постоянным (отдельные сообщения об изменении периода были вызваны недостаточной точностью эксперимента, в частности, неполной очисткой от высокоактивных изотопов). В связи с этим период полураспада считается неизменным. На этом основании строится определение абсолютного геологического возраста горных пород, а также радиоуглеродный метод определения возраста биологических останков.

Предположение об изменяемости периода полураспада используется креационистами, а также представителями т. н. «альтернативной науки» для опровержения научной датировки горных пород, остатков живых существ и исторических находок, с целью дальнейшего опровержения научных теорий, построенных с использованием такой датировки. (См., например, статьи Креационизм, Научный креационизм, Критика эволюционизма, Туринская плащаница).

Вариабельность постоянной распада для электронного захвата наблюдалась в эксперименте, но она лежит в пределах процента во всём доступном в лаборатории диапазоне давлений и температур. Период полураспада в этом случае изменяется в связи с некоторой (довольно слабой) зависимостью плотности волновой функции орбитальных электронов в окрестности ядра от давления и температуры. Существенные изменения постоянной распада наблюдались также для сильно ионизованных атомов (так, в предельном случае полностью ионизованного ядра электронный захват может происходить только при взаимодействии ядра со свободными электронами плазмы; кроме того, распад, разрешённый для нейтральных атомов, в некоторых случаях для сильно ионизованных атомов может быть запрещён кинематически). Все эти варианты изменения постоянных распада, очевидно, не могут быть привлечены для «опровержения» радиохронологических датировок, поскольку погрешность самого радиохронометрического метода для большинства изотопов-хронометров составляет более процента, а высокоионизованные атомы в природных объектах на Земле не могут существовать сколько-нибудь длительное время.

Поиск возможных вариаций периодов полураспада радиоактивных изотопов, как в настоящее время, так и в течение миллиардов лет, интересен в связи с гипотезой о вариациях значений фундаментальных констант в физике (постоянной тонкой структуры, константы Ферми и т. д.). Однако тщательные измерения пока не принесли результата — в пределах погрешности эксперимента изменения периодов полураспада не были найдены. Так, было показано, что за 4,6 млрд лет константа α-распада самария-147 изменилась не более чем на 0,75 %, а для β-распада рения-187 изменение за это же время не превышает 0,5 % [1] ; в обоих случаях результаты совместимы с отсутствием таких изменений вообще.

Источник

Период полураспада

Пери́од полураспа́да квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т. д.) — время T½, в течение которого система распадается с вероятностью 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада количество выживших частиц уменьшится в среднем в 2 раза. Термин применим только к экспоненциально распадающимся системам.

Не следует считать, что за два периода полураспада распадутся все частицы, взятые в начальный момент. Поскольку каждый период полураспада уменьшает число выживших частиц вдвое, за время 2T½ останется четверть от начального числа частиц, за 3T½ — одна восьмая и т. д. Вообще, доля выживших частиц (или, точнее, вероятность выживания p для данной частицы) зависит от времени t следующим образом:

.

Период полураспада, среднее время жизни и константа распада связаны следующими соотношениями, полученными из закона радиоактивного распада:

.

Поскольку , период полураспада примерно на 30,7 % короче, чем среднее время жизни.

На практике период полураспада определяют, измеряя активность исследуемого препарата через определенные промежутки времени. Учитывая, что активность препарата пропорциональна количеству атомов распадающегося вещества, и воспользовавшись законом радиоактивного распада, можно вычислить период полураспада данного вещества [1] .

Содержание

Пример

Если обозначить для данного момента времени число ядер способных к радиоактивному превращению через N, а промежуток времени через t2t1, где t1 и t2 — достаточно близкие моменты времени (t1 9 и 1,389·10 10 лет. Легко подсчитать число атомов урана-238, испытывающих превращение в данном количестве урана, например, в одном килограмме в течение одной секунды. Количество любого элемента в граммах, численно равное атомному весу, содержит, как известно, 6,02·10 23 атомов. Поэтому согласно приведённой выше формуле n = KN(t2t1) найдём число атомов урана, распадающихся в одном килограмме в одну секунду, имея ввиду, что в году 365*24*60*60 секунд,

.

Вычисления приводят к тому, что в одном килограмме урана в течение одной секунды распадается двенадцать миллионов атомов. Несмотря на такое огромное число, всё же скорость превращения ничтожно мала. Действительно, в секунду распадается следующая часть урана:

.

Таким образом, из наличного количества урана в одну секунду распадается его доля, равная

.

Обращаясь опять к основному закону радиоактивного распада KN(t2t1), то есть к тому факту, что из наличного числа атомных ядер в единицу времени распадается всего одна и та же их доля и, имея к тому же ввиду полную независимость атомных ядер в каком-либо веществе друг от друга, можно сказать, что этот закон является статистическим в том смысле, что он не указывает какие именно атомные ядра подвергнутся распаду в данный отрезок времени, а лишь говорит об их числе. Несомненно, этот закон сохраняет силу лишь для того случая, когда наличное число ядер очень велико. Некоторые из атомных ядер распадутся в ближайший момент, в то время как другие ядра будут претерпевать превращения значительно позднее, поэтому когда наличное число радиоактивных атомных ядер сравнительно невелико, закон радиоактивного распада может и не выполняться во всей строгости.

Пример 2

Образец содержит 10 г изотопа плутония Pu-239 с периодом полураспада 24 400 лет. Сколько атомов плутония распадается ежесекундно?

Мы вычислили мгновенную скорость распада. Количество распавшихся атомов вычислим по формуле

Последняя формула действительна только тогда, когда рассматриваемый период времени (в данном случае — 1 секунда) значительно меньше, чем период полураспада. Когда рассматриваемый период времени сравним с периодом полураспада, следует пользоваться формулой

Эта формула пригодна в любом случае, однако для малых периодов времени требует вычислений с очень большой точностью. Для данной задачи:

Парциальный период полураспада

Если система с периодом полураспада T1/2 может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада. Пусть вероятность распада по i-му каналу (коэффициент ветвления) равна pi. Тогда парциальный период полураспада по i-му каналу равен

.

Парциальный имеет смысл периода полураспада, который был бы у данной системы, если «выключить» все каналы распада, кроме i-го. Так как по определению , то для любого канала распада.

Стабильность периода полураспада

Во всех наблюдавшихся случаях (кроме некоторых изотопов, распадающихся путём электронного захвата) период полураспада был постоянным (отдельные сообщения об изменении периода были вызваны недостаточной точностью эксперимента, в частности, неполной очисткой от высокоактивных изотопов). В связи с этим период полураспада считается неизменным. На этом основании строится определение абсолютного геологического возраста горных пород, а также радиоуглеродный метод определения возраста биологических останков.

Предположение об изменяемости периода полураспада используется креационистами, а также представителями т. н. «альтернативной науки» для опровержения научной датировки горных пород, остатков живых существ и исторических находок, с целью дальнейшего опровержения научных теорий, построенных с использованием такой датировки. (См., например, статьи Креационизм, Научный креационизм, Критика эволюционизма, Туринская плащаница).

Вариабельность постоянной распада для электронного захвата наблюдалась в эксперименте, но она лежит в пределах процента во всём доступном в лаборатории диапазоне давлений и температур. Период полураспада в этом случае изменяется в связи с некоторой (довольно слабой) зависимостью плотности волновой функции орбитальных электронов в окрестности ядра от давления и температуры. Существенные изменения постоянной распада наблюдались также для сильно ионизованных атомов (так, в предельном случае полностью ионизованного ядра электронный захват может происходить только при взаимодействии ядра со свободными электронами плазмы; кроме того, распад, разрешённый для нейтральных атомов, в некоторых случаях для сильно ионизованных атомов может быть запрещён кинематически). Все эти варианты изменения постоянных распада, очевидно, не могут быть привлечены для «опровержения» радиохронологических датировок, поскольку погрешность самого радиохронометрического метода для большинства изотопов-хронометров составляет более процента, а высокоионизованные атомы в природных объектах на Земле не могут существовать сколько-нибудь длительное время.

Поиск возможных вариаций периодов полураспада радиоактивных изотопов, как в настоящее время, так и в течение миллиардов лет, интересен в связи с гипотезой о вариациях значений фундаментальных констант в физике (постоянной тонкой структуры, константы Ферми и т. д.). Однако тщательные измерения пока не принесли результата — в пределах погрешности эксперимента изменения периодов полураспада не были найдены. Так, было показано, что за 4,6 млрд лет константа α-распада самария-147 изменилась не более чем на 0,75 %, а для β-распада рения-187 изменение за это же время не превышает 0,5 % [2] ; в обоих случаях результаты совместимы с отсутствием таких изменений вообще.

Источник

Период полураспада

Пери́од полураспа́да квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т.д.) — время T½, в течение которого система распадается с вероятностью 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада количество выживших частиц уменьшится в среднем в 2 раза. Термин применим только к экспоненциально распадающимся системам.

Не следует считать, что за два периода полураспада распадутся все частицы, взятые в начальный момент времени. Поскольку каждый период полураспада уменьшает число выживших частиц вдвое, за время 2T½ останется четверть от начального числа частиц, за 3T½ — одна восьмая и т.д. Вообще, доля выживших частиц (или, точнее, вероятность выживания p для данной частицы) зависит от времени t следующим образом:

.

Период полураспада, среднее время жизни и константа распада связаны следующими соотношениями:

.

Поскольку ln2 = 0,693. , период полураспада примерно на 30% короче, чем время жизни.

Иногда период полураспада называют также полупериодом распада.

Пример [ править | править код ]

Если обозначить для данного момента времени число ядер способных к радиоактивному превращению через N, а промежуток времени через t2t1, где t1 и t2 — достаточно близкие моменты времени (t1 9 и 1,389*10 10 лет. Легко подсчитать число атомов урана 238, испытывающих превращение в данном количестве урана, например, в одном килограмме в течение одной секунды. Количество любого элемента в граммах, численно равное атомному весу, содержит, как известно, 6,02*10 23 атомов. Поэтому согласно приведённой выше формуле n = KN(t2t1) найдём число атомов урана, распадающихся в одном килограмме в одну секунду, имея ввиду, что в году 365*24*60*60 секунд,

.

Вычисления приводят к тому, что в одном килограмме урана в течение одной секунды распадается два миллиона атомов. Несмотря на такое огромное число, всё же скорость превращения ничтожно мала. Действительно, в секунду распадается следующая часть урана:

.

Таким образом, из наличного количества урана в одну секунду распадается его доля, равная

.

Обращаясь опять к основному закону радиоактивного распада KN(t2t1), т.е. к тому факту, что из наличного числа атомных ядер в единицу времени распадается всего одна и та же их доля и, имея к тому же ввиду полную независимость атомных ядер в каком-либо веществе друг от друга, можно сказать, что этот закон является статистическим в том смысле, что он не указывает какие именно атомные ядра подвергнутся распаду в данный отрезок времени, а лишь говорит об их числе. Несомненно, этот закон сохраняет силу лишь для того случая, когда наличное число ядер очень велико. Некоторые из атомных ядер распадутся в ближайший момент, в то время как другие ядра будут претерпевать превращения значительно позднее, поэтому когда наличное число радиоактивных атомных ядер сравнительно невелико, закон радиоактивного распада может и не выполняться во всей строгости.

Парциальный период полураспада [ править | править код ]

Если система с периодом полураспада T1/2 может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада. Пусть вероятность распада по i-му каналу (коэффициент ветвления) равна pi. Тогда парциальный период полураспада по i-му каналу равен

.

Парциальный имеет смысл периода полураспада, который был бы у данной системы, если «выключить» все каналы распада, кроме i-го. Так как по определению , то для любого канала распада.

Источник

Полураспад

Пери́од полураспа́да квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т. д.) — время T½, в течение которого система распадается с вероятностью 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада количество выживших частиц уменьшится в среднем в 2 раза. Термин применим только к экспоненциально распадающимся системам.

Не следует считать, что за два периода полураспада распадутся все частицы, взятые в начальный момент. Поскольку каждый период полураспада уменьшает число выживших частиц вдвое, за время 2T½ останется четверть от начального числа частиц, за 3T½ — одна восьмая и т. д. Вообще, доля выживших частиц (или, точнее, вероятность выживания p для данной частицы) зависит от времени t следующим образом:

.

Период полураспада, среднее время жизни τ и константа распада λ связаны следующими соотношениями:

.

Поскольку ln2 = 0,693… , период полураспада примерно на 30 % короче, чем время жизни.

Иногда период полураспада называют также полупериодом распада.

Содержание

Пример

Если обозначить для данного момента времени число ядер способных к радиоактивному превращению через N, а промежуток времени через t2t1, где t1 и t2 — достаточно близкие моменты времени (t1 9 и 1,389*10 10 лет. Легко подсчитать число атомов урана 238, испытывающих превращение в данном количестве урана, например, в одном килограмме в течение одной секунды. Количество любого элемента в граммах, численно равное атомному весу, содержит, как известно, 6,02*10 23 атомов. Поэтому согласно приведённой выше формуле n = KN(t2t1) найдём число атомов урана, распадающихся в одном килограмме в одну секунду, имея ввиду, что в году 365*24*60*60 секунд,

.

Вычисления приводят к тому, что в одном килограмме урана в течение одной секунды распадается двенадцать миллионов атомов. Несмотря на такое огромное число, всё же скорость превращения ничтожно мала. Действительно, в секунду распадается следующая часть урана:

.

Таким образом, из наличного количества урана в одну секунду распадается его доля, равная

.

Обращаясь опять к основному закону радиоактивного распада KN(t2t1), то есть к тому факту, что из наличного числа атомных ядер в единицу времени распадается всего одна и та же их доля и, имея к тому же ввиду полную независимость атомных ядер в каком-либо веществе друг от друга, можно сказать, что этот закон является статистическим в том смысле, что он не указывает какие именно атомные ядра подвергнутся распаду в данный отрезок времени, а лишь говорит об их числе. Несомненно, этот закон сохраняет силу лишь для того случая, когда наличное число ядер очень велико. Некоторые из атомных ядер распадутся в ближайший момент, в то время как другие ядра будут претерпевать превращения значительно позднее, поэтому когда наличное число радиоактивных атомных ядер сравнительно невелико, закон радиоактивного распада может и не выполняться во всей строгости.

Парциальный период полураспада

Если система с периодом полураспада T1/2 может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада. Пусть вероятность распада по i-му каналу (коэффициент ветвления) равна pi. Тогда парциальный период полураспада по i-му каналу равен

.

Парциальный имеет смысл периода полураспада, который был бы у данной системы, если «выключить» все каналы распада, кроме i-го. Так как по определению , то для любого канала распада.

Стабильность периода полураспада

Во всех наблюдавшихся случаях (кроме некоторых изотопов, распадающихся путём электронного захвата) период полураспада был постоянным (отдельные сообщения об изменении периода были вызваны недостаточной точностью эксперимента, в частности, неполной очисткой от высокоактивных изотопов). В связи с этим период полураспада считается неизменным. На этом основании строится определение абсолютного геологического возраста горных пород, а также радиоуглеродный метод определения возраста биологических останков.

Предположение об изменяемости периода полураспада используется креационистами, а также представителями т. н. «альтернативной науки» для опровержения научной датировки горных пород, остатков живых существ и исторических находок, с целью дальнейшего опровержения научных теорий, построенных с использованием такой датировки. (См., например, статьи Креационизм, Научный креационизм, Критика эволюционизма, Туринская плащаница).

Вариабельность постоянной распада для электронного захвата наблюдалась в эксперименте, но она лежит в пределах процента во всём доступном в лаборатории диапазоне давлений и температур. Период полураспада в этом случае изменяется в связи с некоторой (довольно слабой) зависимостью плотности волновой функции орбитальных электронов в окрестности ядра от давления и температуры. Существенные изменения постоянной распада наблюдались также для сильно ионизованных атомов (так, в предельном случае полностью ионизованного ядра электронный захват может происходить только при взаимодействии ядра со свободными электронами плазмы; кроме того, распад, разрешённый для нейтральных атомов, в некоторых случаях для сильно ионизованных атомов может быть запрещён кинематически). Все эти варианты изменения постоянных распада, очевидно, не могут быть привлечены для «опровержения» радиохронологических датировок, поскольку погрешность самого радиохронометрического метода для большинства изотопов-хронометров составляет более процента, а высокоионизованные атомы в природных объектах на Земле не могут существовать сколько-нибудь длительное время.

Поиск возможных вариаций периодов полураспада радиоактивных изотопов, как в настоящее время, так и в течение миллиардов лет, интересен в связи с гипотезой о вариациях значений фундаментальных констант в физике (постоянной тонкой структуры, константы Ферми и т. д.). Однако тщательные измерения пока не принесли результата — в пределах погрешности эксперимента изменения периодов полураспада не были найдены. Так, было показано, что за 4,6 млрд лет константа α-распада самария-147 изменилась не более чем на 0,75 %, а для β-распада рения-187 изменение за это же время не превышает 0,5 % [1] ; в обоих случаях результаты совместимы с отсутствием таких изменений вообще.

Источник

Период полураспада

Пери́од полураспа́да квантовомеханической системы (частицы, ядра, атома, энергетического уровня и т. д.) — время T½, в течение которого система распадается с вероятностью 1/2. Если рассматривается ансамбль независимых частиц, то в течение одного периода полураспада количество выживших частиц уменьшится в среднем в 2 раза. Термин применим только к экспоненциально распадающимся системам.

Не следует считать, что за два периода полураспада распадутся все частицы, взятые в начальный момент. Поскольку каждый период полураспада уменьшает число выживших частиц вдвое, за время 2T½ останется четверть от начального числа частиц, за 3T½ — одна восьмая и т. д. Вообще, доля выживших частиц (или, точнее, вероятность выживания p для данной частицы) зависит от времени t следующим образом:

.

Период полураспада, среднее время жизни и константа распада связаны следующими соотношениями, полученными из закона радиоактивного распада:

.

Поскольку , период полураспада примерно на 30,7 % короче, чем среднее время жизни.

На практике период полураспада определяют, измеряя активность исследуемого препарата через определенные промежутки времени. Учитывая, что активность препарата пропорциональна количеству атомов распадающегося вещества, и воспользовавшись законом радиоактивного распада, можно вычислить период полураспада данного вещества [1] .

Содержание

Пример

Если обозначить для данного момента времени число ядер способных к радиоактивному превращению через N, а промежуток времени через t2t1, где t1 и t2 — достаточно близкие моменты времени (t1 9 и 1,389·10 10 лет. Легко подсчитать число атомов урана-238, испытывающих превращение в данном количестве урана, например, в одном килограмме в течение одной секунды. Количество любого элемента в граммах, численно равное атомному весу, содержит, как известно, 6,02·10 23 атомов. Поэтому согласно приведённой выше формуле n = KN(t2t1) найдём число атомов урана, распадающихся в одном килограмме в одну секунду, имея ввиду, что в году 365*24*60*60 секунд,

.

Вычисления приводят к тому, что в одном килограмме урана в течение одной секунды распадается двенадцать миллионов атомов. Несмотря на такое огромное число, всё же скорость превращения ничтожно мала. Действительно, в секунду распадается следующая часть урана:

.

Таким образом, из наличного количества урана в одну секунду распадается его доля, равная

.

Обращаясь опять к основному закону радиоактивного распада KN(t2t1), то есть к тому факту, что из наличного числа атомных ядер в единицу времени распадается всего одна и та же их доля и, имея к тому же ввиду полную независимость атомных ядер в каком-либо веществе друг от друга, можно сказать, что этот закон является статистическим в том смысле, что он не указывает какие именно атомные ядра подвергнутся распаду в данный отрезок времени, а лишь говорит об их числе. Несомненно, этот закон сохраняет силу лишь для того случая, когда наличное число ядер очень велико. Некоторые из атомных ядер распадутся в ближайший момент, в то время как другие ядра будут претерпевать превращения значительно позднее, поэтому когда наличное число радиоактивных атомных ядер сравнительно невелико, закон радиоактивного распада может и не выполняться во всей строгости.

Пример 2

Образец содержит 10 г изотопа плутония Pu-239 с периодом полураспада 24 400 лет. Сколько атомов плутония распадается ежесекундно?

Мы вычислили мгновенную скорость распада. Количество распавшихся атомов вычислим по формуле

Последняя формула действительна только тогда, когда рассматриваемый период времени (в данном случае — 1 секунда) значительно меньше, чем период полураспада. Когда рассматриваемый период времени сравним с периодом полураспада, следует пользоваться формулой

Эта формула пригодна в любом случае, однако для малых периодов времени требует вычислений с очень большой точностью. Для данной задачи:

Парциальный период полураспада

Если система с периодом полураспада T1/2 может распадаться по нескольким каналам, для каждого из них можно определить парциальный период полураспада. Пусть вероятность распада по i-му каналу (коэффициент ветвления) равна pi. Тогда парциальный период полураспада по i-му каналу равен

.

Парциальный имеет смысл периода полураспада, который был бы у данной системы, если «выключить» все каналы распада, кроме i-го. Так как по определению , то для любого канала распада.

Стабильность периода полураспада

Во всех наблюдавшихся случаях (кроме некоторых изотопов, распадающихся путём электронного захвата) период полураспада был постоянным (отдельные сообщения об изменении периода были вызваны недостаточной точностью эксперимента, в частности, неполной очисткой от высокоактивных изотопов). В связи с этим период полураспада считается неизменным. На этом основании строится определение абсолютного геологического возраста горных пород, а также радиоуглеродный метод определения возраста биологических останков.

Предположение об изменяемости периода полураспада используется креационистами, а также представителями т. н. «альтернативной науки» для опровержения научной датировки горных пород, остатков живых существ и исторических находок, с целью дальнейшего опровержения научных теорий, построенных с использованием такой датировки. (См., например, статьи Креационизм, Научный креационизм, Критика эволюционизма, Туринская плащаница).

Вариабельность постоянной распада для электронного захвата наблюдалась в эксперименте, но она лежит в пределах процента во всём доступном в лаборатории диапазоне давлений и температур. Период полураспада в этом случае изменяется в связи с некоторой (довольно слабой) зависимостью плотности волновой функции орбитальных электронов в окрестности ядра от давления и температуры. Существенные изменения постоянной распада наблюдались также для сильно ионизованных атомов (так, в предельном случае полностью ионизованного ядра электронный захват может происходить только при взаимодействии ядра со свободными электронами плазмы; кроме того, распад, разрешённый для нейтральных атомов, в некоторых случаях для сильно ионизованных атомов может быть запрещён кинематически). Все эти варианты изменения постоянных распада, очевидно, не могут быть привлечены для «опровержения» радиохронологических датировок, поскольку погрешность самого радиохронометрического метода для большинства изотопов-хронометров составляет более процента, а высокоионизованные атомы в природных объектах на Земле не могут существовать сколько-нибудь длительное время.

Поиск возможных вариаций периодов полураспада радиоактивных изотопов, как в настоящее время, так и в течение миллиардов лет, интересен в связи с гипотезой о вариациях значений фундаментальных констант в физике (постоянной тонкой структуры, константы Ферми и т. д.). Однако тщательные измерения пока не принесли результата — в пределах погрешности эксперимента изменения периодов полураспада не были найдены. Так, было показано, что за 4,6 млрд лет константа α-распада самария-147 изменилась не более чем на 0,75 %, а для β-распада рения-187 изменение за это же время не превышает 0,5 % [2] ; в обоих случаях результаты совместимы с отсутствием таких изменений вообще.

Источник

Период полураспада радиоактивных элементов — что это такое и как его определяют? Формула периода полураспада

История изучения радиоактивности началась 1 марта 1896 года, когда известный французский ученый Анри Беккерель случайно обнаружил странность в излучении солей урана. Оказалось, что фотопластинки, расположенные в одном ящике с образцом, засвечены. К этому привело странное, обладающее высокой проникающей способностью излучение, которым обладал уран. Это свойство обнаружилось у самых тяжелых элементов, завершающих периодическую таблицу. Ему дали название «радиоактивность».

Вводим характеристики радиоактивности

Данный процесс – самопроизвольное превращение атома изотопа элемента в иной изотоп с одновременным выделением элементарных частиц (электронов, ядер атомов гелия). Превращение атомов оказалось самопроизвольным, не требующим поглощения энергии извне. Основной величиной, характеризующей процесс выделения энергии в ходе радиоактивного распада, называют активность.

А=λN, где λ- постоянная распада, N – число активных атомов в образце.

Выделяют α, β, γ-распады. Соответствующие уравнения называют правилами смещения:

превращение атомного ядра Х в ядро Y с выделением ядра атома гелия

превращение атомного ядра Х в ядро Y с выделением электрона

не сопровождается изменением ядра, энергия выделяется в виде электромагнитной волны

Временной интервал в радиоактивности

Момент развала частицы невозможно установить для данного конкретного атома. Для него это скорее «несчастный случай», нежели закономерность. Выделение энергии, характеризующее этот процесс, определяют как активность образца.

Установлено, что существует время, в течение которого ровно половина атомов данного образца претерпевает распад. Этот интервал времени получил название «период полураспада». В чем смысл введения этого понятия?

Что такое период полураспада?

Представляется, что за время, равное периоду, ровно половина всех активных атомов данного образца распадается. Но означает ли это, что за время в два периода полураспада все активные атомы полностью распадутся? Совсем нет. Через определенный момент в образце остается половина радиоактивных элементов, через такой же промежуток времени из оставшихся атомов распадается еще половина, и так далее. При этом излучение сохраняется длительное время, значительно превышающее период полураспада. Значит, активные атомы сохраняются в образце независимо от излучения

Период полураспада — это величина, зависящая исключительно от свойств данного вещества. Значение величины определено для многих известных радиоактивных изотопов.

Таблица: «Полупериод распада отдельных изотопов»

Определение периода полураспада выполнено экспериментально. В ходе лабораторных исследований многократно проводится измерение активности. Поскольку лабораторные образцы минимальных размеров (безопасность исследователя превыше всего), эксперимент проводится с различным интервалом времени, многократно повторяясь. В его основу положена закономерность изменения активности веществ.

С целью определения периода полураспада производится измерение активности данного образца в определенные промежутки времени. С учетом того, что данный параметр связан с количеством распавшихся атомов, используя закон радиоактивного распада, определяют период полураспада.

Пример определения для изотопа

Пусть число активных элементов исследуемого изотопа в данный момент времени равно N, интервал времени, в течение которого ведется наблюдение t2— t1, где моменты начала и окончания наблюдения достаточно близки. Допустим, что n – число атомов, распавшихся в данный временной интервал, тогда n = KN(t2— t1).

В данном выражении K = 0,693/T½ — коэффициент пропорциональности, называющийся константой распада. T½ — период полураспада изотопа.

Примем временной интервал за единицу. При этом K = n/N указывает долю от присутствующих ядер изотопа, распадающихся в единицу времени.

Зная величину константы распада, можно определить и полупериод распада: T½ = 0,693/K.

Отсюда следует, что за единицу времени распадается не определенное количество активных атомов, а определенная их доля.

Закон радиоактивного распада (ЗРР)

Период полураспада положен в основу ЗРР. Закономерность выведена Фредерико Содди и Эрнестом Резерфордом на основе результатов экспериментальных исследований в 1903 году. Удивительно, что многократные измерения, выполненные при помощи приборов, далеких от совершенства, в условиях начала ХХ столетия, привели к точному и обоснованному результату. Он стал основой теории радиоактивности. Выведем математическую запись закона радиоактивного распада.

— Пусть N0 – количество активных атомов в данный момент времени. По истечении интервала времени t нераспавшимися останутся N элементов.

— К моменту времени, равному периоду полураспада, останется ровно половина активных элементов: N=N0/2.

— По прошествии еще одного периода полураспада в образце остаются: N=N0/4=N0/2 2 активных атомов.

— По прошествии времени, равному еще одному периоду полураспада, образец сохранит только: N=N0/8=N0/2 3 .

— К моменту времени, когда пройдет n периодов полураспада, в образце останется N=N0/2 n активных частиц. В этом выражении n=t/T½: отношение времени исследования к периоду полураспада.

— ЗРР имеет несколько иное математическое выражение, более удобное в решении задач: N=N02 — t/ T½.

Закономерность позволяет определить, помимо периода полураспада, число атомов активного изотопа, нераспавшихся в данный момент времени. Зная число атомов образца в начале наблюдения, через некоторое время можно определить время жизни данного препарата.

Определить период полураспада формула закона радиоактивного распада помогает лишь при наличии определенных параметров: числа активных изотопов в образце, что узнать достаточно сложно.

Следствия закона

Записать формулу ЗРР можно, используя понятия активности и массы атомов препарата.

Активность пропорциональна числу радиоактивных атомов: A=A0•2 -t/T . В этой формуле А0 – активность образца в начальный момент времени, А – активность по истечении t секунд, Т – период полураспада.

Масса вещества может быть использована в закономерности: m=m0•2 -t/T

В течение любых равных промежутков времени распадается абсолютно одинаковая доля радиоактивных атомов, имеющихся в наличии в данном препарате.

Границы применимости закона

Закон во всех смыслах является статистическим, определяя процессы, протекающие в микромире. Понятно, что период полураспада радиоактивных элементов – величина статистическая. Вероятностный характер событий в атомных ядрах предполагает, что произвольное ядро может развалиться в любой момент. Предсказать событие невозможно, можно лишь определить его вероятность в данный момент времени. Как следствие, период полураспада не имеет смысла:

  • для отдельного атома;
  • для образца минимальной массы.

Время жизни атома

Существование атома в его первоначальном состоянии может длиться секунду, а может и миллионы лет. Говорить о времени жизни данной частицы также не приходится. Введя величину, равную среднему значению времени жизни атомов, можно вести разговор о существовании атомов радиоактивного изотопа, последствиях радиоактивного распада. Период полураспада ядра атома зависит от свойств данного атома и не зависит от других величин.

Можно ли решить проблему: как найти период полураспада, зная среднее время жизни?

Определить период полураспада формула связи среднего времени жизни атома и постоянной распада помогает не меньше.

В этой записи τ – среднее время жизни, λ – постоянная распада.

Использование периода полураспада

Применение ЗРР для определения возраста отдельных образцов получило широкое распространение в исследованиях конца ХХ века. Точность определения возраста ископаемых артефактов настолько возросла, что может дать представление о времени жизни за тысячелетия до нашей эры.

Радиоуглеродный анализ ископаемых органических образцов основан на изменении активности углерода-14 (радиоактивного изотопа углерода), присутствующего во всех организмах. Он попадает в живой организм в процессе обмена веществ и содержится в нем в определенной концентрации. После смерти обмен веществ с окружающей средой прекращается. Концентрация радиоактивного углерода падает вследствие естественного распада, активность уменьшается пропорционально.

При наличии такого значения, как период полураспада, формула закона радиоактивного распада помогает определить время с момента прекращения жизнедеятельности организма.

Цепочки радиоактивного превращения

Исследования радиоактивности проводились в лабораторных условиях. Удивительная способность радиоактивных элементов сохранять активность в течение часов, суток и даже лет не могла не вызывать удивления у физиков начала ХХ столетия. Исследования, к примеру, тория, сопровождались неожиданным результатом: в закрытой ампуле активность его была значительной. При малейшем дуновении она падала. Вывод оказался прост: превращение тория сопровождается выделением радона (газ). Все элементы в процессе радиоактивности превращаются в совершенно иное вещество, отличающееся и физическими, и химическими свойствами. Это вещество, в свою очередь, также нестабильно. В настоящее время известно три ряда аналогичных превращений.

Знания о подобных превращениях крайне важны при определении времени недоступности зон, зараженных в процессе атомных и ядерных исследований или катастроф. Период полураспада плутония — в зависимости от его изотопа — лежит в интервале от 86 лет (Pu 238) до 80 млн лет (Pu 244). Концентрация каждого изотопа дает представление о периоде обеззараживания территории.

Самый дорогой металл

Известно, что в наше время есть металлы значительно более дорогие, чем золото, серебро и платина. К ним относится и плутоний. Интересно, что в природе созданный в процессе эволюции плутоний не встречается. Большинство элементов получены в лабораторных условиях. Эксплуатация плутония-239 в ядерных реакторах дала возможность ему стать чрезвычайно популярным в наши дни. Получение достаточного для использования в реакторах количества данного изотопа делает его практически бесценным.

Плутоний-239 получается в естественных условиях как следствие цепочки превращений урана-239 в нептуний-239 (период полураспада — 56 часов). Аналогичная цепочка позволяет накопить плутоний в ядерных реакторах. Скорость появления необходимого количества превосходит естественную в миллиарды раз.

Применение в энергетике

Можно много говорить о недостатках атомной энергетики и о «странностях» человечества, которое практически любое открытие использует для уничтожения себе подобных. Открытие плутония-239, который способен принимать участие в цепной ядерной реакции, позволило использовать его в качестве источника мирной энергии. Уран-235, являющийся аналогом плутония, встречается на Земле крайне редко, выделить его из урановой руды значительно сложнее, чем получить плутоний.

Возраст Земли

Радиоизотопный анализ изотопов радиоактивных элементов дает более точное представление о времени жизни того или иного образца.

Использование цепочки превращений «уран – торий», содержащихся в земной коре, дает возможность определить возраст нашей планеты. Процентное соотношение этих элементов в среднем по всей земной коре лежит в основе этого метода. По последним данным, возраст Земли составляет 4,6 миллиарда лет.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector