Меню

Единица измерения ускорения силы тяжести



Ускорение силы тяжести

Ускоре́ние свобо́дного паде́ния g (обычно произносится как «Жэ» или «Жи»), — ускорение, сообщаемое телу под действием притяжения планеты или другого астрономического тела в безвоздушном пространстве — вакууме. Его значение для Земли обычно принимают равным 9,8 или 10 м/с². Стандартное («нормальное») значение, принятое при построении систем единиц, g = 9,80665 м/с², а в технических расчетах обычно принимают g = 9,81 м/с².

Ускорение свободного падения на поверхности некоторых небесных тел, м/с 2

Луна 1,62 Сатурн 9,74
Меркурий 3,68 — 3,74 Земля 9,81
Марс 3,86 Нептун 11,0
Уран 7,51 Юпитер 23,95
Венера 8,88 Солнце 273,1

Значение g было определено как «среднее» в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря.

Реальное ускорение свободного падения на поверхности Земли зависит от широты и варьируется от 9,780 м/с² на экваторе до 9,832 м/с² на полюсах [1] . Оно может быть вычислено по эмпирической формуле:

g = 9,780327(1 + 0,0053024sin 2 (φ) − 0,0000058sin 2 (2φ)) ,

где φ — широта рассматриваемого места. [2]

Содержание

Вычисление ускорения свободного падения

Гравитационное ускорение на различной высоте h над Землёй

h, км g, м/с 2 h, км g, м/с 2
9.8066 20 9.7452
1 9.8036 50 9.6542
2 9.8005 80 9.5644
3 9.7974 100 9.505
4 9.7943 120 9.447
5 9.7912 500 8.45
6 9.7882 1000 7.36
8 9.7820 10 000 1.50
10 9.7759 50 000 0.125
15 9.7605 400 000 0.0025

Ускорение свободного падения состоит из двух слагаемых: гравитационного ускорения и центростремительного ускорения.

Значение гравитационного ускорения на поверхности планеты можно приблизительно подсчитать, представив планету точечной массой M, и вычислив гравитационное ускорение на расстоянии её радиуса R:

,

Если применить эту формулу для вычисления гравитационного ускорения на поверхности Земли, мы получим

м/с²

Полученное значение приблизительно совпадает с ускорением свободного падения. Отличия обусловлены:

  • центростремительным ускорением в системе отсчёта, связанной с вращающейся Землёй;
  • неточностью формулы из-за того, что масса планеты распределена по объёму, который, кроме того, имеет нешарообразную форму(см. геоид);
  • неоднородностью Земли, что используется для поиска полезных ископаемых по гравитационным аномалиям;
Ускорение свободного падения для некоторых городов

Город Географические координаты (по Гринвичу) Высота над уровнем моря, м Ускорение свободного падения, м/с 2
Долгота Широта
Берлин 13,40 в.д. 52,50 с.ш. 40 9,81280
Будапешт 19,06 в.д. 47,48 с.ш. 108 9,80852
Вашингтон 77,01 з.д. 38,89 с.ш. 14 9,80112
Вена 16,36 в.д. 48,21 с.ш. 183 9,80860
Гринвич 0,0 в.д. 51,48 с.ш. 48 9,81188
Каир 31,28 в.д. 30,07 с.ш. 30 9,79317
Мадрид 3,69 в.д. 40,41 с.ш. 655 9,79981
Москва 37,61 в.д. 55,75 с.ш. 151 9,8154
Нью-Йорк 73,96 з.д. 40,81 с.ш. 38 9,80247
Одесса 30,73 в.д. 46,47 с.ш. 54 9.80735
Осло 10,72 в.д. 59,91 с.ш. 28 9,81927
Париж 2,34 в.д. 48,84 с.ш. 61 9,80943
Прага 14,39 в.д. 50,09 с.ш. 297 9,81014
Рим 12,99 в.д. 41,54 с.ш. 37 9,80312
Стокгольм 18,06 в.д. 59,34 с.ш. 45 9,81843
Токио 139,80 в.д. 35,71 с.ш. 18 9,79801

Исторически масса Земли была впервые определена Генри Кавендишем, исходя из известного ускорения свободного падения и радиуса Земли, и впервые измеренной им гравитационной постоянной.

Перегрузки

Термин жэ используется в космонавтике и авиации для обозначения перегрузок — увеличения веса тела, вызванного его ускоренным движением. Допустимое значение перегрузок для гражданских самолетов составляет 4,33 жи. Обычный человек может выдерживать перегрузки до 5 g. Тренированные пилоты в антиперегрузочных костюмах могут переносить перегрузки до 9 g. Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при 2-3 g в глазах «краснеет» и человек теряет сознание из-за прилива крови к голове.

В этом вопросе существует небольшая терминологическая путаница: к примеру, определение перегрузки выше даёт для стоящего неподвижно человека перегрузку в 0g, но в таблице ниже этот же случай рассматривается как перегрузка в 1g. Похожий казус происходит при измерении давления: мы говорим — давление 0, подразумевая давление в одну атмосферу вокруг нас, учёный скажет — давление 0, подразумевая полное отсутствие молекул в данном объёме.

Источник

Ускорение свободного падения

Ускорение свободного падения на поверхности некоторых небесных тел, м/с 2

Солнце 273,1
Меркурий 3,68—3,74 Венера 8,88
Земля 9,81 Луна 1,62
Церера 0,27 Марс 3,86
Юпитер 23,95 Сатурн 10,44
Уран 8,86 Нептун 11,09
Плутон 0,61

Ускоре́ние свобо́дного паде́ния g (обычно произносится как «Же»), — ускорение, придаваемое телу в вакууме силой тяжести, то есть геометрической суммой гравитационного притяжения планеты (или другого астрономического тела) и сил инерции, вызванных её вращением, за исключением кориолисовых сил инерции [1] . В соответствии со вторым законом Ньютона, ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.

Значение ускорения свободного падения на поверхности Земли обычно принимают равным 9,8 или 10 м/с². Стандартное («нормальное») значение, принятое при построении систем единиц, g = 9,80665 м/с² [2] , а в технических расчётах обычно принимают g = 9,81 м/с² .

Стандартное значение g было определено как «среднее» в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря.

Реальное ускорение свободного падения на поверхности Земли зависит от широты, времени суток и других факторов. Оно варьируется от 9,780 м/с² на экваторе до 9,832 м/с² на полюсах [3] . Оно может быть вычислено (в м/с²) по эмпирической формуле:

где — широта рассматриваемого места, — высота над уровнем моря в метрах. [4] Эта формула применима лишь в ограниченном диапазоне высот от 0 до нескольких десятков км, где убывание ускорения свободного падения с высотой можно считать линейным (на самом же деле оно убывает квадратично).

Содержание

Вычисление ускорения свободного падения

Гравитационное ускорение на различной высоте h над Землёй

h , км g, м/с 2 h , км g, м/с 2
9,8066 20 9,7452
1 9,8036 50 9,6542
2 9,8005 80 9,5644
3 9,7974 100 9,505
4 9,7943 120 9,447
5 9,7912 500 8,45
6 9,7882 1000 7,36
8 9,7820 10 000 1,50
10 9,7759 50 000 0,125
15 9,7605 400 000 0,0025

Ускорение свободного падения состоит из двух слагаемых: гравитационного ускорения и центробежного ускорения.

Значение гравитационного ускорения на поверхности планеты можно приблизительно подсчитать, представив планету однородным шаром массой M и вычислив гравитационное ускорение на расстоянии её радиуса R :

,

Если применить эту формулу для вычисления гравитационного ускорения на поверхности Земли (масса М = 5,9736·10 24 кг , радиус R = 6,371·10 6 м ), мы получим

Читайте также:  Прибор для измерения тклр

м/с².

Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. Отличия обусловлены:

  • центробежным ускорением, которое присутствует в системе отсчёта, связанной с вращающейся Землёй [5] ;
  • отличием формы Земли от шарообразной (см. геоид);
  • неоднородностью Земли, что используется для поиска полезных ископаемых по гравитационным аномалиям (гравиразведка).
Ускорение свободного падения для некоторых городов

Город Долгота Широта Высота над уровнем моря, м Ускорение свободного падения, м/с 2
Берлин 13,40 в.д. 52,50 с.ш. 40 9,81280
Будапешт 19,06 в.д. 47,48 с.ш. 108 9,80852
Вашингтон 77,01 з.д. 38,89 с.ш. 14 9,80112
Вена 16,36 в.д. 48,21 с.ш. 183 9,80860
Владивосток 131,53 в.д. 43,06 с.ш. 50 9,80424
Гринвич 0,0 в.д. 51,48 с.ш. 48 9,81188
Каир 31,28 в.д. 30,07 с.ш. 30 9,79317
Киев 30,30 в.д. 50,27 с.ш. 179 9,81054
Мадрид 3,69 в.д. 40,41 с.ш. 667 9,79981
Минск 27,55 в.д. 53,92 с.ш. 220 9,81347
Москва 37,61 в.д. 55,75 с.ш. 151 9,8154
Нью-Йорк 73,96 з.д. 40,81 с.ш. 38 9,80247
Одесса 30,73 в.д. 46,47 с.ш. 54 9.80735
Осло 10,72 в.д. 59,91 с.ш. 28 9,81927
Париж 2,34 в.д. 48,84 с.ш. 61 9,80943
Прага 14,39 в.д. 50,09 с.ш. 297 9,81014
Рим 12,99 в.д. 41,54 с.ш. 37 9,80312
Стокгольм 18,06 в.д. 59,34 с.ш. 45 9,81843
Токио 139,80 в.д. 35,71 с.ш. 18 9,79801

Исторически масса Земли была впервые определена Генри Кавендишем, исходя из известного ускорения свободного падения и радиуса Земли, и впервые измеренной им гравитационной постоянной.

Перегрузки

«Же» используется в космонавтике, авиации, автоспорте, а также вообще в технике как единица измерения перегрузок — увеличения веса тела, вызванного его движением с ускорением. Допустимое значение перегрузок для гражданских самолетов составляет 4,33 g [источник не указан 69 дней] . Обычный человек может выдерживать перегрузки до 5 g [источник не указан 769 дней] . Тренированные пилоты в антиперегрузочных костюмах могут переносить перегрузки до 9 g . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при −2. -3 g в глазах «краснеет» и человек тяжелее переносит такую перегрузку из-за прилива крови к голове.

В этом вопросе существует небольшая терминологическая путаница: к примеру, определение перегрузки выше даёт для стоящего неподвижно человека перегрузку в 0 g , но в таблице ниже этот же случай рассматривается как перегрузка в 1 g . Похожий казус происходит также и при измерении давления: мы говорим — давление 0, подразумевая давление в одну атмосферу вокруг нас, учёный скажет — давление 0, подразумевая полное отсутствие молекул в данном объёме.

Источник

Ускорение силы тяжести

Основные формулы для равноускоренного движения

Равноускоренное движение — самый простой вид неравномерного движения. Равноускоренным называется движение с ускорением, постоянным по модулю и направлению:

Δv — изменение скорости (“дельта v “), м/с;

Δt — промежуток времени, (“дельта t “)за которое произошло изменение скорости, с.

Из формулы (1) следует, что размерность ускорения будет выражаться в метрах на секунду в квадрате:

Второй закон Ньютона гласит:

F — сила, действующая на тело, Н;

m — масса тела, кг;

a — ускорение, м/с 2 .

Сила тяжести и ускорение свободного падения

При свободном падении на Землю все тела, независимо от их массы, движутся одинаково. Свободное движение является равноускоренным движением. Ускорение, с которым падают на Землю тела в пустоте, называется ускорением свободного падения (или ускорением силы тяжести). Условие пустоты или, что тоже самое, вакуума, требуется для исключения влияния сопротивления атмосферного воздуха. Сила притяжения Fт со стороны Земли на тело массой m, называется силой тяжести:

Определением ускорения силы тяжести впервые систематически занимался Галилео Галилей — итальянский математик, физик, астроном. Будучи профессором университета в городе Пиза, Галилей измерял время падения предметов с высоты местной, слегка наклонной, башни.

Рис. 1. Галилео Галилей измеряет ускорение свободного падения.

В результате этих наблюдений он пришел к следующим выводам:

  • Время падения не зависит от массы тела. Все тела падают одинаково;
  • Падение тел представляет собой равноускоренное движение с ускорением $ g = 9,81 < м\over c^2>$ .

И хотя это открытие датировано 1589г., современное, общепринятое среднее значение g практически не отличается от этого значения. Когда от расчетов не требуется высокой точности, то принимают, что модуль g равен 10 м/с 2 .

Последовавшие за Галилеем более точные измерения показали, что значение g не является абсолютной константой, а зависит от местоположения измерений в разных точках Земли. Ответ на этот вопрос нашел английский ученый Исаак Ньютон.

Закон всемирного тяготения

В 1682 г. Ньютон открыл закон всемирного тяготения, из которого следует:

  • все тела притягиваются друг к другу;
  • сила тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними;
  • векторы сил тяготения направлены вдоль прямой, соединяющей тела.

Этот закон универсален, и для случая пары тел, одно из которых является произвольным телом массой m, а второй — Земля, в виде формулы выглядит так:

Mз — масса Земли, кг;

Rз — радиус Земли, м;

h — высота, на которой находится тело, относительно поверхности Земли, м;

G — гравитационная постоянная, равная 6,6720 * 10 -11 Н*м 2 * кг -2 .

Из формул (4) и (5) следует, что:

Из (6) следует, что ускорение силы тяжести будет зависеть от высоты h и величины радиуса Земли, который для обычных расчетов принимается равным примерно 6400 км. Но поскольку форма Земли не является идеальным шаром, а сплюснута к полюсам, то точные значения g будут отличаться от среднего значения в 9,81 м/с 2 :

  • максимальное значение gмакс = 9,83 м/с 2 — на полюсах Земли, где Rз меньше;
  • минимальное значение gмин = 9,79 м/с 2 — на экваторе Земли, где Rз больше.

Рис. 2. Зависимость ускорения свободного падения на полюсах, экваторе и от вращения Земли.

Из формулы (6) также следует, что ускорение силы тяжести на других планетах, имеющих массу, отличающуюся от массы Земли, будет для космонавтов значительно отличаться от привычных земных условий. Так, например:

  • На Марсе — gМарса = 3,86 м/с 2 ;
  • На Меркурии — gМеркурия = 3,7 м/с 2 ;
  • На Луне — gЛуны = 1,62 м/с 2 ;
  • На Нептуне — gНептуна = 11,0 м/с 2 .

Как определяют ускорение силы тяжести

Для точного измерения силы тяжести, а значит, и ускорения, используется прибор, называемый гравиметром. Прибор применяется при поиске полезных ископаемых и для сбора информации археологами, палеонтологами, гидрологами и представителями других профессий, изучающих поверхность Земли.

Читайте также:  Расход рабочей среды единица измерения

Рис. 3. Гравиметры:.

Следует упомянуть еще два фактора, влияющих на значение ускорения свободного падения:

  • Известно, что Земля вращается вокруг своей оси, имея при этом так называемое центростремительное ускорение, которое влияет на величину ускорения свободного падения;
  • Масса Земли распределена неравномерно, например, в местах расположения больших месторождений металлических руд ускорение силы тяжести будет больше, а там, где есть пустоты (газовые месторождения) ускорение будет несколько меньше.

Эти факторы дают очень малые отклонения от средних значений g , но зато их регистрация позволяет, например, геологам находить новые месторождения полезных ископаемых.

Что мы узнали?

Итак, мы узнали, что такое ускорение силы тяжести. Сила тяжести возникает вследствие действия силы гравитации, подчиняющейся закону Ньютона (формула (5)). На Земле среднее значение ускорения силы тяжести gЗемли равно 9,81 м/с 2 . Для точного определения ускорения силы тяжести требуется использование современных приборов, называемых гравиметрами.

Источник

Ускорение свободного падения

Ускорение свободного падения на поверхности некоторых небесных тел, м/с 2

Солнце 273,1
Меркурий 3,68—3,74 Венера 8,88
Земля 9,81 Луна 1,62
Церера 0,27 Марс 3,86
Юпитер 23,95 Сатурн 10,44
Уран 8,86 Нептун 11,09
Плутон 0,61

Ускоре́ние свобо́дного паде́ния g (обычно произносится как «Же»), — ускорение, придаваемое телу в вакууме силой тяжести, то есть геометрической суммой гравитационного притяжения планеты (или другого астрономического тела) и сил инерции, вызванных её вращением, за исключением кориолисовых сил инерции [1] . В соответствии со вторым законом Ньютона, ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.

Значение ускорения свободного падения на поверхности Земли обычно принимают равным 9,8 или 10 м/с². Стандартное («нормальное») значение, принятое при построении систем единиц, g = 9,80665 м/с² [2] , а в технических расчётах обычно принимают g = 9,81 м/с² .

Стандартное значение g было определено как «среднее» в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря.

Реальное ускорение свободного падения на поверхности Земли зависит от широты, времени суток и других факторов. Оно варьируется от 9,780 м/с² на экваторе до 9,832 м/с² на полюсах [3] . Оно может быть вычислено (в м/с²) по эмпирической формуле:

где — широта рассматриваемого места, — высота над уровнем моря в метрах. [4] Эта формула применима лишь в ограниченном диапазоне высот от 0 до нескольких десятков км, где убывание ускорения свободного падения с высотой можно считать линейным (на самом же деле оно убывает квадратично).

Содержание

Вычисление ускорения свободного падения

Гравитационное ускорение на различной высоте h над Землёй

h , км g, м/с 2 h , км g, м/с 2
9,8066 20 9,7452
1 9,8036 50 9,6542
2 9,8005 80 9,5644
3 9,7974 100 9,505
4 9,7943 120 9,447
5 9,7912 500 8,45
6 9,7882 1000 7,36
8 9,7820 10 000 1,50
10 9,7759 50 000 0,125
15 9,7605 400 000 0,0025

Ускорение свободного падения состоит из двух слагаемых: гравитационного ускорения и центробежного ускорения.

Значение гравитационного ускорения на поверхности планеты можно приблизительно подсчитать, представив планету однородным шаром массой M и вычислив гравитационное ускорение на расстоянии её радиуса R :

,

Если применить эту формулу для вычисления гравитационного ускорения на поверхности Земли (масса М = 5,9736·10 24 кг , радиус R = 6,371·10 6 м ), мы получим

м/с².

Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. Отличия обусловлены:

  • центробежным ускорением, которое присутствует в системе отсчёта, связанной с вращающейся Землёй [5] ;
  • отличием формы Земли от шарообразной (см. геоид);
  • неоднородностью Земли, что используется для поиска полезных ископаемых по гравитационным аномалиям (гравиразведка).
Ускорение свободного падения для некоторых городов

Город Долгота Широта Высота над уровнем моря, м Ускорение свободного падения, м/с 2
Берлин 13,40 в.д. 52,50 с.ш. 40 9,81280
Будапешт 19,06 в.д. 47,48 с.ш. 108 9,80852
Вашингтон 77,01 з.д. 38,89 с.ш. 14 9,80112
Вена 16,36 в.д. 48,21 с.ш. 183 9,80860
Владивосток 131,53 в.д. 43,06 с.ш. 50 9,80424
Гринвич 0,0 в.д. 51,48 с.ш. 48 9,81188
Каир 31,28 в.д. 30,07 с.ш. 30 9,79317
Киев 30,30 в.д. 50,27 с.ш. 179 9,81054
Мадрид 3,69 в.д. 40,41 с.ш. 667 9,79981
Минск 27,55 в.д. 53,92 с.ш. 220 9,81347
Москва 37,61 в.д. 55,75 с.ш. 151 9,8154
Нью-Йорк 73,96 з.д. 40,81 с.ш. 38 9,80247
Одесса 30,73 в.д. 46,47 с.ш. 54 9.80735
Осло 10,72 в.д. 59,91 с.ш. 28 9,81927
Париж 2,34 в.д. 48,84 с.ш. 61 9,80943
Прага 14,39 в.д. 50,09 с.ш. 297 9,81014
Рим 12,99 в.д. 41,54 с.ш. 37 9,80312
Стокгольм 18,06 в.д. 59,34 с.ш. 45 9,81843
Токио 139,80 в.д. 35,71 с.ш. 18 9,79801

Исторически масса Земли была впервые определена Генри Кавендишем, исходя из известного ускорения свободного падения и радиуса Земли, и впервые измеренной им гравитационной постоянной.

Перегрузки

«Же» используется в космонавтике, авиации, автоспорте, а также вообще в технике как единица измерения перегрузок — увеличения веса тела, вызванного его движением с ускорением. Допустимое значение перегрузок для гражданских самолетов составляет 4,33 g [источник не указан 69 дней] . Обычный человек может выдерживать перегрузки до 5 g [источник не указан 769 дней] . Тренированные пилоты в антиперегрузочных костюмах могут переносить перегрузки до 9 g . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при −2. -3 g в глазах «краснеет» и человек тяжелее переносит такую перегрузку из-за прилива крови к голове.

В этом вопросе существует небольшая терминологическая путаница: к примеру, определение перегрузки выше даёт для стоящего неподвижно человека перегрузку в 0 g , но в таблице ниже этот же случай рассматривается как перегрузка в 1 g . Похожий казус происходит также и при измерении давления: мы говорим — давление 0, подразумевая давление в одну атмосферу вокруг нас, учёный скажет — давление 0, подразумевая полное отсутствие молекул в данном объёме.

Источник

Ускорение свободного падения

Ускорение свободного падения — движение объекта, который получает ускорение из-за действующей на него силы тяжести; обозначается буквой g и измеряется в м/с². На поверхности Земли ускорение свободного падения примерно равно 9,81 м/с².

На полюсах (Южном и Северном) ускорение свободного падения будет больше, а на экваторе — меньше. Это происходит из-за двух фактов:

  • Земля — не идеальный круг, а приплюснутый шар и её радиус на полюсах меньше, чем на экваторе (ускорение зависит от радиуса),
  • центробежные силы (при вращении Земли) минимально компенсируют гравитацию больше на экваторе, чем на полюсах.
Читайте также:  Измерение причинно следственных связей

В вакууме тела падают с одинаковой скоростью потому, что ускорение свободного падения не зависит от массы.

Таблица ускорения свободного падения небесных тел

Небесное тело g (в м/с²)
Луна 1,62
Солнце 274
Меркурий 3,72
Венера 8,87
Земля 9,81
Марс 3,711
Юпитер 24,79
Сатурн 10,44
Уран 8,87
Нептун 11,15

От чего зависит ускорение свободного падения?

Ускорение свободного падения зависит от массы планеты и радиуса планеты — чем она тяжелее, тем сильнее притягивает тела (т.е. масса тела не влияет на ускорение).

Возможно для будущих вычислений нужны будут эти данные:

  1. Масса Земли = 5,98 × (10^24) кг (или 5,972E24 кг)
  2. Радиус Земли = 6 371 км = 6,37×(10^6) м.

Как найти ускорение свободного падения?

Формула ускорения свободного падения

Гравитационная постоянная («G», не путайте с «g») — это фундаментальная физическая константа, которая примерно равна

и связывает силы гравитационного притяжения между двумя телами (G) с их массами (m1 и m2) и расстоянием между ними (R) в формуле:

Пример расчёта ускорения свободного падения (для Земли):

Как узнать время падения тела?

Формула времени свободного падения (когда тело падает вертикально):

  • t — время
  • V — скорость тела
  • g — ускорение ≈ 9,8 м/с²
  • h — расстояние

Нужно найти скорость и время падения.

V² = 0² + 2 × 9,8 м/с² × 20 м ⇔ V = √392 м/с ≈ 19,8 м/с

Зная скорость, применяем эту формулу:

t = V / g = (19,8 м/с) / (9,8 м/с²) ≈ 2,02 с

Либо используя только высоту и ускорение:

t = √(2h/g) = √(2 × 20 м / 9,8 м/с²) ≈ 2,02 с

Где нужны знания о свободном падении?

Они могут понадобиться:

  • в авиации,
  • в космонавтике,
  • при поиске полезных ископаемых (там, где есть залежи тяжёлых ископаемых, g меняется),
  • при разработке новых лыжных трамплинов и полос приземления,
  • при разработке новых автомобилей (рассчитываются наилучшие показатели для экономии топлива).

Источник

Ускорение силы тяжести

Ускоре́ние свобо́дного паде́ния g (обычно произносится как «Жэ» или «Жи»), — ускорение, сообщаемое телу под действием притяжения планеты или другого астрономического тела в безвоздушном пространстве — вакууме. Его значение для Земли обычно принимают равным 9,8 или 10 м/с². Стандартное («нормальное») значение, принятое при построении систем единиц, g = 9,80665 м/с², а в технических расчетах обычно принимают g = 9,81 м/с².

Ускорение свободного падения на поверхности некоторых небесных тел, м/с 2

Луна 1,62 Сатурн 9,74
Меркурий 3,68 — 3,74 Земля 9,81
Марс 3,86 Нептун 11,0
Уран 7,51 Юпитер 23,95
Венера 8,88 Солнце 273,1

Значение g было определено как «среднее» в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря.

Реальное ускорение свободного падения на поверхности Земли зависит от широты и варьируется от 9,780 м/с² на экваторе до 9,832 м/с² на полюсах [1] . Оно может быть вычислено по эмпирической формуле:

g = 9,780327(1 + 0,0053024sin 2 (φ) − 0,0000058sin 2 (2φ)) ,

где φ — широта рассматриваемого места. [2]

Содержание

Вычисление ускорения свободного падения

Гравитационное ускорение на различной высоте h над Землёй

h, км g, м/с 2 h, км g, м/с 2
9.8066 20 9.7452
1 9.8036 50 9.6542
2 9.8005 80 9.5644
3 9.7974 100 9.505
4 9.7943 120 9.447
5 9.7912 500 8.45
6 9.7882 1000 7.36
8 9.7820 10 000 1.50
10 9.7759 50 000 0.125
15 9.7605 400 000 0.0025

Ускорение свободного падения состоит из двух слагаемых: гравитационного ускорения и центростремительного ускорения.

Значение гравитационного ускорения на поверхности планеты можно приблизительно подсчитать, представив планету точечной массой M, и вычислив гравитационное ускорение на расстоянии её радиуса R:

,

Если применить эту формулу для вычисления гравитационного ускорения на поверхности Земли, мы получим

м/с²

Полученное значение приблизительно совпадает с ускорением свободного падения. Отличия обусловлены:

  • центростремительным ускорением в системе отсчёта, связанной с вращающейся Землёй;
  • неточностью формулы из-за того, что масса планеты распределена по объёму, который, кроме того, имеет нешарообразную форму(см. геоид);
  • неоднородностью Земли, что используется для поиска полезных ископаемых по гравитационным аномалиям;
Ускорение свободного падения для некоторых городов

Город Географические координаты (по Гринвичу) Высота над уровнем моря, м Ускорение свободного падения, м/с 2
Долгота Широта
Берлин 13,40 в.д. 52,50 с.ш. 40 9,81280
Будапешт 19,06 в.д. 47,48 с.ш. 108 9,80852
Вашингтон 77,01 з.д. 38,89 с.ш. 14 9,80112
Вена 16,36 в.д. 48,21 с.ш. 183 9,80860
Гринвич 0,0 в.д. 51,48 с.ш. 48 9,81188
Каир 31,28 в.д. 30,07 с.ш. 30 9,79317
Мадрид 3,69 в.д. 40,41 с.ш. 655 9,79981
Москва 37,61 в.д. 55,75 с.ш. 151 9,8154
Нью-Йорк 73,96 з.д. 40,81 с.ш. 38 9,80247
Одесса 30,73 в.д. 46,47 с.ш. 54 9.80735
Осло 10,72 в.д. 59,91 с.ш. 28 9,81927
Париж 2,34 в.д. 48,84 с.ш. 61 9,80943
Прага 14,39 в.д. 50,09 с.ш. 297 9,81014
Рим 12,99 в.д. 41,54 с.ш. 37 9,80312
Стокгольм 18,06 в.д. 59,34 с.ш. 45 9,81843
Токио 139,80 в.д. 35,71 с.ш. 18 9,79801

Исторически масса Земли была впервые определена Генри Кавендишем, исходя из известного ускорения свободного падения и радиуса Земли, и впервые измеренной им гравитационной постоянной.

Перегрузки

Термин жэ используется в космонавтике и авиации для обозначения перегрузок — увеличения веса тела, вызванного его ускоренным движением. Допустимое значение перегрузок для гражданских самолетов составляет 4,33 жи. Обычный человек может выдерживать перегрузки до 5 g. Тренированные пилоты в антиперегрузочных костюмах могут переносить перегрузки до 9 g. Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при 2-3 g в глазах «краснеет» и человек теряет сознание из-за прилива крови к голове.

В этом вопросе существует небольшая терминологическая путаница: к примеру, определение перегрузки выше даёт для стоящего неподвижно человека перегрузку в 0g, но в таблице ниже этот же случай рассматривается как перегрузка в 1g. Похожий казус происходит при измерении давления: мы говорим — давление 0, подразумевая давление в одну атмосферу вокруг нас, учёный скажет — давление 0, подразумевая полное отсутствие молекул в данном объёме.

Источник