Меню

Единица измерения величины термометра



Единицы измерения температуры

  • Существует несколько различных единиц измерения температуры. Они делятся на относительные (градус Цельсия, градус Фаренгейта…) и абсолютные (Кельвин, градус Ранкина…).

Наиболее известными являются следующие:

* Градус Цельсия (°C)

* Градус Фаренгейта (°F)

* Градус Реомюра (°Ré, °Re, °R)

* Градус Рёмера (°Rø)

* Градус Ранкина (°Ra)

* Градус Делиля (°Д или °D)

* Градус Дальтона (°Dа)

* Градус Ньютона (°N)

* Лейденский градус (°L или ÐL)

Планковская температура (TP)

Связанные понятия

Термин гра́дус используется в нескольких шкалах температур. Обычно используемый символ ° предшествует начальной букве названия шкалы измерения, например: “°C” для шкалы Цельсия. Градус можно определить как набор изменений температуры, измеряемой по определённой шкале, например, один градус по Цельсию составляет одну сотую изменения температуры между точками плавления льда и кипения воды.

Для большинства пронумерованных астероидов известны всего несколько физических параметров. Всего несколько сотен астероидов имеют собственные страницы в Википедии, на которых содержится название, обстоятельства открытия, таблица элементов орбиты и ожидаемые физические характеристики.

Антиферромагнетик — вещество, в котором установился антиферромагнитный порядок магнитных моментов атомов или ионов. В антиферромагнетиках спиновые магнитные моменты электронов самопроизвольно ориентированы антипараллельно друг другу. Такая ориентация охватывает попарно соседние атомы. В результате антиферромагнетики обладают очень малой магнитной восприимчивостью и ведут себя как слабые парамагнетики.

Источник

Единицы измерения величин: Температура

Продолжаем публиковать справочную информацию, которая поможет переводить температурные показатели в нужные единицы измерения.

Способ задания значений температуры – температурная шкала. Известно несколько температурных шкал.

  • Шкала Кельвина (по имени английского физика У. Томсона, лорда Кельвина).

Обозначение единицы: К (не «градус Кельвина» и не °К).
1 К = 1/273,16 – часть термодинамической температуры тройной точки воды, соответствующей термодинамическому равновесию системы, состоящей изо льда, воды и пара.

  • Шкала Цельсия (по имени шведского астронома и физика А. Цельсия).

Обозначение единицы: °С .
В этой шкале температура таяния льда при нормальном давлении принята равной 0°С, температура кипения воды – 100°С.
Шкалы Кельвина и Цельсия связаны уравнением: t ( °C) = Т (К) – 273,15.

  • Шкала Фаренгейта (Д. Г. Фаренгейт – немецкий физик).

Обозначение единицы: °F . Применяется широко, в частности, в США.
Шкала Фаренгейта и шкала Цельсия связаны: t (°F) = 1,8 · t (°C) + 32°C. По абсолютному значению 1 (°F) = 1 (°C).

  • Шкала Реомюра (по имени французского физика Р.А. Реомюра).

Обозначение: °R и °r .
Эта шкала почти вышла из употребления.
Соотношение с градусом Цельсия: t (°R) = 0,8 · t (°C).

  • Шкала Рэнкина (Ранкина) – по имени шотландского инженера и физика У. Дж. Ранкина.

Обозначение: °R (иногда: °Rank) .
Шкала также применяется в США.
Температура по шкале Рэнкина соотносится с температурой по шкале Кельвина: t (°R) = 9/5 · Т (К).

Основные температурные показатели в единицах измерения разных шкал:

Данная публикация носит исключительно ознакомительный характер, подбор датчиков сопряжен со множеством факторов. Обратитесь к специалистам компании ООО «РусАвтоматизация» для правильного подбора оборудования.

Подписывайтесь на наш канал, чтобы не пропускать новые публикации.

Источник

Справка по температуре. Виды температурных шкал. Единицы измерения. Термометры и их общая классификация.

физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы.

Единицами измерения температуры служат градусы. Существует несколько основных шкал градусов (Кельвина, Цельсия, Фаренгейта, Реомюра ). При эксплуатации производственных объектов встречаются две из них:

  • шкала градусов Кельвина. Условное обозначений K (ранее °K). Точкой отчета шкалы служит абсолютный нуль. В основном встречается при выполнение инженерных расчетов, связанных с вопросами термодинамики, тепломассообмена (теплотехники), и подбором оборудования на основании расчетов;
  • шкала градусов Цельсия. Условное обозначений °C. Точка отчета принята таким образом, что температура тройной точки воды равна 0,01 °C. Широко применяется при эксплуатации производственных объектов. На данной шкале основаны приборы КиП. Данная шкала широко используется для заполнения эксплуатационной документации, нанесения маркировок, выбора оборудования и средства КиП, не требующих инженерных расчетов.

Перевод единиц измерения температур.

tc=T-273.15 (°C) или T=tc+273.15 (K), где

tc — температура в градусах Цельсия, °C;

T — температура в градусах Кельвина, К.

Измерение температуры.

Для измерения температур используются различный термометры. Различают следующие основные виды термометров:

  • контактные ( есть непосредственный теплового контакта между датчиком термометра и средой, температура которой измеряется);
  • бесконтактные (нет теплового контакта среды и прибора, предусматривается измерение собственного теплового или оптического излучения).

Контактные термометры по принципу действия делятся на:

  • термометры расширения (используются свойства твердых и жидких тел изменять свою длину или объем под влиянием температуры окружающей среды);
  • манометрические термометры (основаны на зависимости давления в замкнутой термосистеме от измеряемой температуры);
  • термометры сопротивления (основаны на явлении изменения электрического сопротивления проводника в зависимости от его температуры);
  • термопары (основан на возникновении напряжения при нагревании, возникающий ток позволяет проводить измерения температуры).

Бесконтактные термометры по принципу действия делятся на:

  • пирометры излучения (основан на определении по тепловому электромагнитному излучению температурного значения его поверхности);
  • радиометры (в преобразовании
    измеряемого теплового потока в спектральном диапазоне
    в электрический сигнал);
  • тепловизоры ( преобразуют инфракрасные излучения, поступающие от объекта наблюдения, последовательно преобразуя из электрической формы в видимую картинку).

Отзывы, рекомендации, замечания по работе программ (калькуляторов) и добавлению новых можно оставлять в комментариях.

Источник

Основные единицы измерения температуры. Приборы для измерения температуры почвы и воздуха

Для измерения температуры среды применяют различные виды термометров: жидкостные, деформационные, термоэлектрические.

Жидкостные термометры основаны на принципе изменения объема жидкости с изменением температуры, В качестве жидкости в таких термометрах используется ртуть или спирт. Ртутные термометры более чувствительны, но ртуть замерзает при -38,9°. Поэтому для измерения низких температур пользуются спиртовыми термометрами.

Термоэлектрические термометры основаны на изменении электродвижущей силы термопар, возникающей вследствие разности температур спаев. Термопары могут быть из меди и константана.

Термометры сопротивления основаны на принципе изменения сопротивления проводников и полупроводников с изменением температуры. Особенно точны полупроводниковые термометры сопротивления – термистры.

Деформационные термометры основаны на принципе изменения линейных размеров твердых тел с изменением температуры. Приемником таких термометров является биметаллическая пластинка или пружина из меди и железа.

Сравнимость показаний термометров осуществляется по их градуировочным шкалам. Единицы измерения температуры зависят от выбранной температурной шкалы. Существуют шкалы Фаренгейта, Реомюра, Цельсия, Кельвина.
Шкала Фаренгейта (1724 г.) – температурная шкала, 1 градус которой равен 1/180 температуры кипения воды и таяния льда. При нормальном атмосферном давлении таяние льда 32°F. Она связана с температурой по шкале Цельсия t°C = 5/9 (t°F — 32°).
Шкала Реомюра (1730 г.) – температурная шкала, 1 градус которой равен 1/80 температуры кипения воды и таяния льда при нормальном атмосферном давлении. R°C=5/4°C.
Наиболее широкое распространение получили шкалы Цельсия и Кельвина.
Градус шкалы Цельсия (1742 г.) (°С) составляет 1/100 интервала между точками таяния льда (0°С) и кипения воды (100°С).
Градус шкалы Кельвина (1848) (°К) определяется как 1/273,16 член термодинамической шкалы между абсолютным нулем (-273,16°С) и тройной точкой. Связи между температурой по шкале Кельвина (Т) и по шкале Цельсия t°K = t°C + 273,16.

Сопоставление температурных шкал Фаренгейта, Цельсия (стоградусной) и Кельвина приведено на рисунке 2.1.

Рисунок 2.1 Сопоставление температурных шкал Фаренгейта, Цельсия (стоградусной) и Кельвина

Для измерения температуры среды в срок наблюдений применяется срочный термометр (рис. 2.2 а). Пределы измерения температуры от -31°С до +50°С или от -35°С до +41°С.

Рисунок 2.2 Термометры:а) срочный; б) максимальный; в) минимальный:
1 – резервуар; 2 – капилляр; 3 – шкала; 4 – защищенная оправа (оболочка); 5 – седло; 6 – пробки; 7 – стеклянный штифт, впаянный в резервуар 1; 8 – капилляр, суженный за счет штифта 2; 9 – штифтик; 10 – мениск спирта.

Представляет собой стеклянный сосуд 1 (резервуар), наполненный ртутью или спиртом. К резервуару припаяна тонкая стеклянная трубочка 2 (капилляр). Верхний конец капилляра запаян, а нижний соединен с резервуаром. Сзади капилляра расположена шкала 3 в виде пластинки молочного стекла с нанесенными на ней градусными делениями – цена деления 0,5°С. Термометр защищен стеклянной оболочкой 4. Шкала термометра своим нижним концом упирается в выступ 5 (седло), верхняя часть шкалы закрепляется при помощи пробок 6.

Для определения максимальной температуры среды за промежуток времени между сроками наблюдений служит термометр ртутный максимальный. Пределы измерения температур от -35°С до +50°С или от -20°С до +70°С. Отличается от срочного тем, что в дно его резервуара 2 впаян штифт 7 (рис. 2.2 б), верхний конец которого входит в капилляр 8. оставляя в нем узкое кольцеобразное отверстие. При повышении температуры расширяющаяся ртуть преодолевает суженное место и поднимается вверх. При понижении температуры объем ртути в резервуаре уменьшается, и в этот момент происходит разрыв столбика ртути в суженном месте капилляра. После разрыва столбик ртути остается на месте и показывает максимальную температуру.
После снятия отсчета термометр готовят к следующим измерению: встряхивают его, держа резервуар книзу до тех пор, пока столбик ртути соединится с резервуаром.

При измерении минимальной температуры за промежуток времени между сроками наблюдений применяется термометр спиртовой минимальный.
Термометр спиртовой имеет шкалу из молочного стекла с делениями через 0,5°С. Измеряет температуры в диапазоне от -75°С до +41°С. Сохранение минимальных значений обеспечивается находящимся в капилляре (рис. 2.2 в) внутри спирта небольшого штифта 9 из темного стекла, имеющего на своих концах круглые утолщения. Утолщения штифта меньше внутреннего диаметра капилляра, поэтому при повышении температуры спирт обтекает штифт 9, не смещая его. Штифтик подобран таким образом, что силы трения его о стенки капилляра больше сил расширения спирта и меньше сил поверхностного натяжения пленки. Поэтому при повышении температуры спирт, расширяясь, свободно обтекает штифт, а при понижении температуры, как только поверхностная пленка дойдет до штифтика, последний перемещается вместе со спиртом в сторону резервуара При понижении температуры штифт после соприкосновения с мениском 10 перемещается вместе со спиртом к резервуару. Таким образом, положение конца штифта ближайшего к мениску спирта, указывает минимальную температуру.
После снятия отсчета термометр готовят к следующему измерению. Для этого поднимают его резервуаром кверху и держат до тех пор, пока штифт не опустится до мениска спирта.

Установка термометров производится в южной части метеорологической площадки. Участок поверхности земли размером 4×6 метров перекапывается, рыхлится и выравнивается. Термометры укладываются на поверхность земли в центр участка так, чтобы резервуар и оболочка термометра погружались наполовину в почву. Первым с северной стороны кладут срочный, затем минимальный и максимальный на расстоянии 5-6 см друг от друга, ориентируя резервуары на восток.

Дата добавления: 2018-04-15 ; просмотров: 1303 ; Мы поможем в написании вашей работы!

Источник

Термометр

Термо́метр (греч. θέρμη «тепло» + μετρέω «измеряю») — прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:

  • жидкостные;
  • механические;
  • электронные;
  • оптические;
  • газовые;
  • инфракрасные.

Содержание

История изобретения

Изобретателем термометра принято считать Галилея: в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани, засвидетельствовали, что уже в 1597 году он сделал нечто вроде термобароскопа (термоскоп). Галилей изучал в это время работы Герона Александрийского, у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили бренди и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня.

Читайте также:  Неповеренное средство измерения это

Изобретение термометра также приписывают лорду Бэкону, Роберт Фладду, Санкториусу, Скарпи, Корнелию Дреббелю ( Cornelius Drebbel ), Порте и Саломону де Каус, писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в 1667 г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, но они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского Фердинанда II. Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точность. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

В 1703 г. Амонтон ( Guillaume Amontons ) в Париже усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведённого к одному и тому же объёму при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулём такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный абсолютный нуль), а второй постоянной точкой — температура кипения воды. Влияние атмосферного давления на температуру кипения ещё не было известно Амонтону, а воздух в его термометре не был освобождён от водяных газов; поэтому из его данных абсолютный нуль получается при −239,5° по шкале Цельсия. Другой воздушный термометр Амонтона, выполненный очень несовершенно, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, снизу наполнено крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом.

Современную форму термометру придал Фаренгейт и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же состоянии барометра. Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения.

Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский астроном, геолог и метеоролог Андерс Цельсий в 1742 г. Но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания. В своей работе Цельсий «Observations of two persistent degrees on a thermometer» рассказал о своих экспериментах, показывающих, что температура плавления льда (100°) не зависит от давления. Он также определил с удивительной точностью, как температура кипения воды варьировалась в зависимости от атмосферного давления. Он предположил, что отметку 0 (точку кипения воды) можно откалибровать, зная на каком уровне относительно моря находится термометр.

Позже, уже после смерти Цельсия, его современники и соотечественники ботаник Карл Линней и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру плавления льда, а за 100° — кипения воды). В таком виде шкала оказалась очень удобной, получила широкое распространение и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим — шкалу перевернул преемник Цельсия М.Штремер и в XVIII веке такой термометр был широко распространён под именем «шведский термометр», а в самой Швеции — под именем Штремера, но известнейший шведский химик Иоганн Якоб в своем труде «Руководства по химии» по ошибке назвал шкалу М. Штремера цельсиевой шкалой и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Работы Реомюра в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, неудобный в употреблении, а его способ разделения на градусы был неточным и неудобным.

После Фаренгейта и Реомюра дело изготовления термометров попало в руки ремесленников, так как термометры стали предметом торговли.

В 1848 г. английский физик Вильям Томсон (лорд Кельвин) доказал возможность создания абсолютной шкалы температур, нуль которой не зависит от свойств воды или вещества, заполняющего термометр. Точкой отсчета в «шкале Кельвина» послужило значение абсолютного нуля: −273,15° С. При этой температуре прекращается тепловое движение молекул. Следовательно, становится невозможным дальнейшее охлаждение тел.

Жидкостные термометры

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды.

В связи с запретом применения ртути [1] [2] из-за её опасности для здоровья [3] во многих областях деятельности ведется поиск альтернативных наполнений для бытовых термометров. Например, такой заменой может стать сплав галинстан. Также все шире применяются другие типы термометров.

Об удалении разлившейся ртути из разбитого термометра см. статью Демеркуризация

Механические термометры

Термометры этого типа действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлическая спираль или лента из биметалла.

Электронные термометры

Принцип работы электронных термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.

Электронные термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C — 100Ω) PT1000 (сопротивление при 0 °C — 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 — +850 °C.

R T = R 0 [ 1 + A T + B T 2 + C T 3 ( T − 100 ) ] ( − 200 ∘ C T 0 ∘ C ) , <\displaystyle R_=R_<0>\left[1+AT+BT^<2>+CT^<3>(T-100)\right]\;(-200\;<>^<\circ >\mathrm R T = R 0 [ 1 + A T + B T 2 ] ( 0 ∘ C ≤ T 850 ∘ C ) . <\displaystyle R_=R_<0>\left[1+AT+BT^<2>\right]\;(0\;<>^<\circ >\mathrm \leq T

Отсюда, R T <\displaystyle R_> сопротивление при T °C, R 0 <\displaystyle R_<0>> сопротивление при 0 °C, и константы (для платинового сопротивления) —

A = 3.9083 × 10 − 3 ∘ C − 1 <\displaystyle A=3.9083\times 10^<-3>\;<>^<\circ >\mathrm ^<-1>>B = − 5.775 × 10 − 7 ∘ C − 2 <\displaystyle B=-5.775\times 10^<-7>\;<>^<\circ >\mathrm ^<-2>>C = − 4.183 × 10 − 12 ∘ C − 4 . <\displaystyle C=-4.183\times 10^<-12>\;<>^<\circ >\mathrm ^<-4>.>

  • см. Эффект Пельтье

Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости, спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.

Инфракрасные термометры

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В некоторых странах уже давно имеется тенденция отказа от ртутных термометров в пользу инфракрасных не только в медицинских учреждениях, но и на бытовом уровне.

Технические термометры

Технические термометры используются на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом во всех жизненных сферах.

Выделяют такие виды технических термометров:

  • термометры технические жидкостные
  • термометры биметаллические ТБ, ТБТ, ТБИ;
  • термометры сельскохозяйственные ТС-7А-М
  • термометры максимальные СП-83;
  • термометры для спецкамер низкоградусные СП-100;
  • термометры специальные вибростойкие СП-1;
  • термометры ртутные электроконтактные ТПК;
  • термометры лабораторные ТЛ;
  • термометры для нефтепродуктов ТН;
  • термометры для испытаний нефтепродуктов ТИН.

Максимальный и минимальный термометр

По виду фиксации предельного значения температуры ,термометры разделяются на максимальные, минимальные и нефиксирующие. [4]

Газовый термометр — прибор для измерения температуры, основанный на законе Шарля. В начале XVIII в. 1703 году Шарль установил, что одинаковое нагревание любого газа приводит к одинаковому повышению давления, если при этом объём остается постоянным. При изменении температуры по шкале Цельсия зависимость давления газа при постоянном объёме выражается линейным законом. А отсюда следует, что давление газа (при V = const) можно принять в качестве количественной меры температуры. Соединив сосуд, в котором находится газ, с манометром и проградуировав прибор, можно измерять температуру по показаниям манометра.

Читайте также:  При измерении резистора показывает 0

В широких пределах изменений концентраций газов и температур и малых давлениях температурный коэффициент давления разных газов примерно одинаковый, поэтому способ измерения температуры с помощью газового термометра оказывается малозависящим от свойств конкретного вещества, используемого в термометре в качестве рабочего тела. Наиболее точные результаты получаются, если в качестве рабочего тела использовать водород или гелий.

Источник

Единицы измерения температуры

  • Существует несколько различных единиц измерения температуры. Они делятся на относительные (градус Цельсия, градус Фаренгейта…) и абсолютные (Кельвин, градус Ранкина…).

Наиболее известными являются следующие:

* Градус Цельсия (°C)

* Градус Фаренгейта (°F)

* Градус Реомюра (°Ré, °Re, °R)

* Градус Рёмера (°Rø)

* Градус Ранкина (°Ra)

* Градус Делиля (°Д или °D)

* Градус Дальтона (°Dа)

* Градус Ньютона (°N)

* Лейденский градус (°L или ÐL)

Планковская температура (TP)

Связанные понятия

Термин гра́дус используется в нескольких шкалах температур. Обычно используемый символ ° предшествует начальной букве названия шкалы измерения, например: “°C” для шкалы Цельсия. Градус можно определить как набор изменений температуры, измеряемой по определённой шкале, например, один градус по Цельсию составляет одну сотую изменения температуры между точками плавления льда и кипения воды.

Для большинства пронумерованных астероидов известны всего несколько физических параметров. Всего несколько сотен астероидов имеют собственные страницы в Википедии, на которых содержится название, обстоятельства открытия, таблица элементов орбиты и ожидаемые физические характеристики.

Антиферромагнетик — вещество, в котором установился антиферромагнитный порядок магнитных моментов атомов или ионов. В антиферромагнетиках спиновые магнитные моменты электронов самопроизвольно ориентированы антипараллельно друг другу. Такая ориентация охватывает попарно соседние атомы. В результате антиферромагнетики обладают очень малой магнитной восприимчивостью и ведут себя как слабые парамагнетики.

Источник

Термометр

Термо́метр (греч. θέρμη «тепло» + μετρέω «измеряю») — прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров:

  • жидкостные;
  • механические;
  • электронные;
  • оптические;
  • газовые;
  • инфракрасные.

Содержание

История изобретения

Изобретателем термометра принято считать Галилея: в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани, засвидетельствовали, что уже в 1597 году он сделал нечто вроде термобароскопа (термоскоп). Галилей изучал в это время работы Герона Александрийского, у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Термоскоп представлял собой небольшой стеклянный шарик с припаянной к нему стеклянной трубкой. Шарик слегка нагревали и конец трубки опускали в сосуд с водой. Через некоторое время воздух в шарике охлаждался, его давление уменьшалось и вода под действием атмосферного давления поднималась в трубке вверх на некоторую высоту. В дальнейшем при потеплении давление воздуха в шарике увеличивалось и уровень воды в трубке понижался при охлаждении же вода в ней поднималась. При помощи термоскопа можно было судить только об изменении степени нагретости тела: числовых значений температуры он не показывал, так как не имел шкалы. Кроме того, уровень воды в трубке зависел не только от температуры, но и от атмосферного давления. В 1657 г. термоскоп Галилея был усовершенствован флорентийскими учеными. Они снабдили прибор шкалой из бусин и откачали воздух из резервуара (шарика) и трубки. Это позволило не только качественно, но и количественно сравнивать температуры тел. Впоследствии термоскоп был изменен: его перевернули шариком вниз, а в трубку вместо воды налили бренди и удалили сосуд. Действие этого прибора основывалось на расширении тел, в качестве «постоянных» точек брали температуры наиболее жаркого летнего и наиболее холодного зимнего дня.

Изобретение термометра также приписывают лорду Бэкону, Роберт Фладду, Санкториусу, Скарпи, Корнелию Дреббелю ( Cornelius Drebbel ), Порте и Саломону де Каус, писавшим позднее и частью имевшим личные отношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкой, содержащего воздух, отделённый от атмосферы столбиком воды, они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления.

Термометры с жидкостью описаны в первый раз в 1667 г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водой, но они лопались, когда она замерзала; употреблять для этого винный спирт начали в 1654 году по мысли великого герцога тосканского Фердинанда II. Флорентийские термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно.

Сначала мастер должен был сделать деления на трубке, соображаясь с её относительными размерами и размерами шарика: деления наносились расплавленной эмалью на разогретую на лампе трубку, каждое десятое обозначалось белой точкою, а другие чёрными. Обыкновенно делали 50 делений таким образом, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все они показывали одно и то же значение температуры при одинаковых условиях, однако такого не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую точность. Наполняли термометры посредством подогревания шарика и опускания конца трубки в спирт, заканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большими и могли служить для определения температуры воздуха, но были ещё неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою.

В 1703 г. Амонтон ( Guillaume Amontons ) в Париже усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведённого к одному и тому же объёму при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулём такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный абсолютный нуль), а второй постоянной точкой — температура кипения воды. Влияние атмосферного давления на температуру кипения ещё не было известно Амонтону, а воздух в его термометре не был освобождён от водяных газов; поэтому из его данных абсолютный нуль получается при −239,5° по шкале Цельсия. Другой воздушный термометр Амонтона, выполненный очень несовершенно, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, снизу наполнено крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом.

Современную форму термометру придал Фаренгейт и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешёл к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырём или поваренной солью, при температуре «начала замерзания воды» он показывал 32°, а температура тела здорового человека во рту или под мышкой была эквивалентна 96°. Впоследствии он нашёл, что вода кипит при 212° и эта температура была всегда одна и та же при том же состоянии барометра. Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения.

Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский астроном, геолог и метеоролог Андерс Цельсий в 1742 г. Но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания. В своей работе Цельсий «Observations of two persistent degrees on a thermometer» рассказал о своих экспериментах, показывающих, что температура плавления льда (100°) не зависит от давления. Он также определил с удивительной точностью, как температура кипения воды варьировалась в зависимости от атмосферного давления. Он предположил, что отметку 0 (точку кипения воды) можно откалибровать, зная на каком уровне относительно моря находится термометр.

Позже, уже после смерти Цельсия, его современники и соотечественники ботаник Карл Линней и астроном Мортен Штремер использовали эту шкалу в перевёрнутом виде (за 0° стали принимать температуру плавления льда, а за 100° — кипения воды). В таком виде шкала оказалась очень удобной, получила широкое распространение и используется до нашего времени.

По одним сведениям, Цельсий сам перевернул свою шкалу по совету Штремера. По другим сведениям, шкалу перевернул Карл Линней в 1745 году. А по третьим — шкалу перевернул преемник Цельсия М.Штремер и в XVIII веке такой термометр был широко распространён под именем «шведский термометр», а в самой Швеции — под именем Штремера, но известнейший шведский химик Иоганн Якоб в своем труде «Руководства по химии» по ошибке назвал шкалу М. Штремера цельсиевой шкалой и с тех пор стоградусная шкала стала носить имя Андерса Цельсия.

Работы Реомюра в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, неудобный в употреблении, а его способ разделения на градусы был неточным и неудобным.

После Фаренгейта и Реомюра дело изготовления термометров попало в руки ремесленников, так как термометры стали предметом торговли.

В 1848 г. английский физик Вильям Томсон (лорд Кельвин) доказал возможность создания абсолютной шкалы температур, нуль которой не зависит от свойств воды или вещества, заполняющего термометр. Точкой отсчета в «шкале Кельвина» послужило значение абсолютного нуля: −273,15° С. При этой температуре прекращается тепловое движение молекул. Следовательно, становится невозможным дальнейшее охлаждение тел.

Жидкостные термометры

Жидкостные термометры основаны на принципе изменения объёма жидкости, которая залита в термометр (обычно это спирт или ртуть), при изменении температуры окружающей среды.

В связи с запретом применения ртути [1] [2] из-за её опасности для здоровья [3] во многих областях деятельности ведется поиск альтернативных наполнений для бытовых термометров. Например, такой заменой может стать сплав галинстан. Также все шире применяются другие типы термометров.

Об удалении разлившейся ртути из разбитого термометра см. статью Демеркуризация

Механические термометры

Термометры этого типа действуют по тому же принципу, что и жидкостные, но в качестве датчика обычно используется металлическая спираль или лента из биметалла.

Электронные термометры

Принцип работы электронных термометров основан на изменении сопротивления проводника при изменении температуры окружающей среды.

Электронные термометры более широкого диапазона основаны на термопарах (контакт между металлами с разной электроотрицательностью создаёт контактную разность потенциалов, зависящую от температуры).

Читайте также:  Измерение сил нарисовать шкалу

Наиболее точными и стабильными во времени являются термометры сопротивления на основе платиновой проволоки или платинового напыления на керамику. Наибольшее распространение получили PT100 (сопротивление при 0 °C — 100Ω) PT1000 (сопротивление при 0 °C — 1000Ω) (IEC751). Зависимость от температуры почти линейна и подчиняется квадратичному закону при положительной температуре и уравнению 4 степени при отрицательных (соответствующие константы весьма малы, и в первом приближении эту зависимость можно считать линейной). Температурный диапазон −200 — +850 °C.

R T = R 0 [ 1 + A T + B T 2 + C T 3 ( T − 100 ) ] ( − 200 ∘ C T 0 ∘ C ) , <\displaystyle R_=R_<0>\left[1+AT+BT^<2>+CT^<3>(T-100)\right]\;(-200\;<>^<\circ >\mathrm R T = R 0 [ 1 + A T + B T 2 ] ( 0 ∘ C ≤ T 850 ∘ C ) . <\displaystyle R_=R_<0>\left[1+AT+BT^<2>\right]\;(0\;<>^<\circ >\mathrm \leq T

Отсюда, R T <\displaystyle R_> сопротивление при T °C, R 0 <\displaystyle R_<0>> сопротивление при 0 °C, и константы (для платинового сопротивления) —

A = 3.9083 × 10 − 3 ∘ C − 1 <\displaystyle A=3.9083\times 10^<-3>\;<>^<\circ >\mathrm ^<-1>>B = − 5.775 × 10 − 7 ∘ C − 2 <\displaystyle B=-5.775\times 10^<-7>\;<>^<\circ >\mathrm ^<-2>>C = − 4.183 × 10 − 12 ∘ C − 4 . <\displaystyle C=-4.183\times 10^<-12>\;<>^<\circ >\mathrm ^<-4>.>

  • см. Эффект Пельтье

Оптические термометры

Оптические термометры позволяют регистрировать температуру благодаря изменению уровня светимости, спектра и иных параметров (см. Волоконно-оптическое измерение температуры) при изменении температуры. Например, инфракрасные измерители температуры тела.

Инфракрасные термометры

Инфракрасный термометр позволяет измерять температуру без непосредственного контакта с человеком. В некоторых странах уже давно имеется тенденция отказа от ртутных термометров в пользу инфракрасных не только в медицинских учреждениях, но и на бытовом уровне.

Технические термометры

Технические термометры используются на предприятиях в сельском хозяйстве, нефтехимической, химической, горно-металлургической промышленностях, в машиностроении, жилищно- коммунальном хозяйстве, транспорте, строительстве, медицине, словом во всех жизненных сферах.

Выделяют такие виды технических термометров:

  • термометры технические жидкостные
  • термометры биметаллические ТБ, ТБТ, ТБИ;
  • термометры сельскохозяйственные ТС-7А-М
  • термометры максимальные СП-83;
  • термометры для спецкамер низкоградусные СП-100;
  • термометры специальные вибростойкие СП-1;
  • термометры ртутные электроконтактные ТПК;
  • термометры лабораторные ТЛ;
  • термометры для нефтепродуктов ТН;
  • термометры для испытаний нефтепродуктов ТИН.

Максимальный и минимальный термометр

По виду фиксации предельного значения температуры ,термометры разделяются на максимальные, минимальные и нефиксирующие. [4]

Газовый термометр — прибор для измерения температуры, основанный на законе Шарля. В начале XVIII в. 1703 году Шарль установил, что одинаковое нагревание любого газа приводит к одинаковому повышению давления, если при этом объём остается постоянным. При изменении температуры по шкале Цельсия зависимость давления газа при постоянном объёме выражается линейным законом. А отсюда следует, что давление газа (при V = const) можно принять в качестве количественной меры температуры. Соединив сосуд, в котором находится газ, с манометром и проградуировав прибор, можно измерять температуру по показаниям манометра.

В широких пределах изменений концентраций газов и температур и малых давлениях температурный коэффициент давления разных газов примерно одинаковый, поэтому способ измерения температуры с помощью газового термометра оказывается малозависящим от свойств конкретного вещества, используемого в термометре в качестве рабочего тела. Наиболее точные результаты получаются, если в качестве рабочего тела использовать водород или гелий.

Источник

Единицы измерения величин: Температура

Продолжаем публиковать справочную информацию, которая поможет переводить температурные показатели в нужные единицы измерения.

Способ задания значений температуры – температурная шкала. Известно несколько температурных шкал.

  • Шкала Кельвина (по имени английского физика У. Томсона, лорда Кельвина).

Обозначение единицы: К (не «градус Кельвина» и не °К).
1 К = 1/273,16 – часть термодинамической температуры тройной точки воды, соответствующей термодинамическому равновесию системы, состоящей изо льда, воды и пара.

  • Шкала Цельсия (по имени шведского астронома и физика А. Цельсия).

Обозначение единицы: °С .
В этой шкале температура таяния льда при нормальном давлении принята равной 0°С, температура кипения воды – 100°С.
Шкалы Кельвина и Цельсия связаны уравнением: t ( °C) = Т (К) – 273,15.

  • Шкала Фаренгейта (Д. Г. Фаренгейт – немецкий физик).

Обозначение единицы: °F . Применяется широко, в частности, в США.
Шкала Фаренгейта и шкала Цельсия связаны: t (°F) = 1,8 · t (°C) + 32°C. По абсолютному значению 1 (°F) = 1 (°C).

  • Шкала Реомюра (по имени французского физика Р.А. Реомюра).

Обозначение: °R и °r .
Эта шкала почти вышла из употребления.
Соотношение с градусом Цельсия: t (°R) = 0,8 · t (°C).

  • Шкала Рэнкина (Ранкина) – по имени шотландского инженера и физика У. Дж. Ранкина.

Обозначение: °R (иногда: °Rank) .
Шкала также применяется в США.
Температура по шкале Рэнкина соотносится с температурой по шкале Кельвина: t (°R) = 9/5 · Т (К).

Основные температурные показатели в единицах измерения разных шкал:

Данная публикация носит исключительно ознакомительный характер, подбор датчиков сопряжен со множеством факторов. Обратитесь к специалистам компании ООО «РусАвтоматизация» для правильного подбора оборудования.

Подписывайтесь на наш канал, чтобы не пропускать новые публикации.

Источник

Единицы измерения температуры

Существует несколько различных единиц измерения температуры.

Наиболее известными являются следующие:

Сравнение шкал

по Цельсию по Фаренгейту по Кельвину по Ранкину по Делилю по Ньютону по Реомюру по Рёмеру
300,00 572,00 573,15 1031,67 −300,00 99,00 240,00 165,00
290,00 554,00 563,15 1013,67 −285,00 95,70 232,00 159,75
280,00 536,00 553,15 995,67 −270,00 92,40 224,00 154,50
270,00 518,00 543,15 977,67 −255,00 89,10 216,00 149,25
260,00 500,00 533,15 959,67 −240,00 85,80 208,00 144,00
250,00 482,00 523,15 941,67 −225,00 82,50 200,00 138,75
240,00 464,00 513,15 923,67 −210,00 79,20 192,00 133,50
230,00 446,00 503,15 905,67 −195,00 75,90 184,00 128,25
220,00 428,00 493,15 887,67 −180,00 72,60 176,00 123,00
210,00 410,00 483,15 869,67 −165,00 69,30 168,00 117,75
200,00 392,00 473,15 851,67 −150,00 66,00 160,00 112,50
190,00 374,00 463,15 833,67 −135,00 62,70 152,00 107,25
180,00 356,00 453,15 815,67 −120,00 59,40 144,00 102,00
170,00 338,00 443,15 797,67 −105,00 56,10 136,00 96,75
160,00 320,00 433,15 779,67 −90,00 52,80 128,00 91,50
150,00 302,00 423,15 761,67 −75,00 49,50 120,00 86,25
140,00 284,00 413,15 743,67 −60,00 46,20 112,00 81,00
130,00 266,00 403,15 725,67 −45,00 42,90 104,00 75,75
120,00 248,00 393,15 707,67 −30,00 39,60 96,00 70,50
110,00 230,00 383,15 689,67 −15,00 36,30 88,00 65,25
100,00 212,00 373,15 671,67 0,00 33,00 80,00 60,00
90,00 194,00 363,15 653,67 15,00 29,70 72,00 54,75
80,00 176,00 353,15 635,67 30,00 26,40 64,00 49,50
70,00 158,00 343,15 617,67 45,00 23,10 56,00 44,25
60,00 140,00 333,15 599,67 60,00 19,80 48,00 39,00
50,00 122,00 323,15 581,67 75,00 16,50 40,00 33,75
40,00 104,00 313,15 563,67 90,00 13,20 32,00 28,50
30,00 86,00 303,15 545,67 105,00 9,90 24,00 23,25
20,00 68,00 293,15 527,67 120,00 6,60 16,00 18,00
10,00 50,00 283,15 509,67 135,00 3,30 8,00 12,75
0,00 32,00 273,15 491,67 150,00 0,00 0,00 7,50
−10,00 14,00 263,15 473,67 165,00 −3,30 −8,00 2,25
−20,00 −4,00 253,15 455,67 180,00 −6,60 −16,00 −3,00
−30,00 −22,00 243,15 437,67 195,00 −9,90 −24,00 −8,25
−40,00 −40,00 233,15 419,67 210,00 −13,20 −32,00 −13,50
−50,00 −58,00 223,15 401,67 225,00 −16,50 −40,00 −18,75
−60,00 −76,00 213,15 383,67 240,00 −19,80 −48,00 −24,00
−70,00 −94,00 203,15 365,67 255,00 −23,10 −56,00 −29,25
−80,00 −112,00 193,15 347,67 270,00 −26,40 −64,00 −34,50
−90,00 −130,00 183,15 329,67 285,00 −29,70 −72,00 −39,75
−100,00 −148,00 173,15 311,67 300,00 −33,00 −80,00 −45,00
−110,00 −166,00 163,15 293,67 315,00 −36,30 −88,00 −50,25
−120,00 −184,00 153,15 275,67 330,00 −39,60 −96,00 −55,50
−130,00 −202,00 143,15 257,67 345,00 −42,90 −104,00 −60,75
−140,00 −220,00 133,15 239,67 360,00 −46,20 −112,00 −66,00
−150,00 −238,00 123,15 221,67 375,00 −49,50 −120,00 −71,25
−160,00 −256,00 113,15 203,67 390,00 −52,80 −128,00 −76,50
−170,00 −274,00 103,15 185,67 405,00 −56,10 −136,00 −81,75
−180,00 −292,00 93,15 167,67 420,00 −59,40 −144,00 −87,00
−190,00 −310,00 83,15 149,67 435,00 −62,70 −152,00 −92,25
−200,00 −328,00 73,15 131,67 450,00 −66,00 −160,00 −97,50
−210,00 −346,00 63,15 113,67 465,00 −69,30 −168,00 −102,75
−220,00 −364,00 53,15 95,67 480,00 −72,60 −176,00 −108,00
−230,00 −382,00 43,15 77,67 495,00 −75,90 −184,00 −113,25
−240,00 −400,00 33,15 59,67 510,00 −79,20 −192,00 −118,50
−250,00 −418,00 23,15 41,67 525,00 −82,50 −200,00 −123,75
−260,00 −436,00 13,15 23,67 540,00 −85,80 −208,00 −129,00
−273,15 −459,67 0,00 0,00 559,73 −90,14 −218,52 −135,90

Ссылки

Для улучшения этой статьи желательно ? :

  • Дополнить статью (статья слишком короткая либо содержит лишь словарное определение).

Wikimedia Foundation . 2010 .

Смотреть что такое «Единицы измерения температуры» в других словарях:

Единицы измерения — В физике и технике единицы измерения (единицы физических величин, единицы величин[1]) используются для стандартизованного представления результатов измерений. Использование термина единица измерения противоречит рекомендациям метрологических… … Википедия

Единицы измерения — конкретные величины, к рым присвоены числовые значения, равные 1. С Е. и. сравнивают и в них выражают др. однородные с ними величины. Решением Генеральной конференции по мерам и весам (1960) введена Международная система ед. СИ как единая… … Словарь микробиологии

ЕДИНИЦЫ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ВЕЛИЧИН — величины, по определению считающиеся равными единице при измерении других величин такого же рода. Эталон единицы измерения ее физическая реализация. Так, эталоном единицы измерения метр служит стержень длиной 1 м. В принципе, можно представить… … Энциклопедия Кольера

Единицы измерения времени — Современные единицы измерения времени основаны на периодах обращения Земли вокруг своей оси и вокруг Солнца, а также обращения Луны вокруг Земли. Такой выбор единиц обусловлен как историческими, так и практическими соображениями: необходимостью… … Википедия

Единица измерения температуры — Единицы измерения температуры Градус Цельсия Градус Фаренгейта Кельвин (до 1968 градус Кельвина) Градус Реомюра Градус Ранкина Градус Делиля Ссылки … Википедия

Единицы величин — В физике и технике единицы измерения (единицы физических величин, единицы величин[1]) используются для стандартизованного представления результатов измерений. Численное значение физической величины представляется как отношение измеренного… … Википедия

Единицы физических величин — В физике и технике единицы измерения (единицы физических величин, единицы величин[1]) используются для стандартизованного представления результатов измерений. Численное значение физической величины представляется как отношение измеренного… … Википедия

ИЗМЕРЕНИЯ И ВЗВЕШИВАНИЕ — Измерения служат для получения точного, объективного и легко воспроизводимого описания физической величины. Не производя измерений, нельзя охарактеризовать физическую величину количественно. Чисто словесные определения низкая или высокая… … Энциклопедия Кольера

Единицы мер — С древнейших времен употребляются для практических надобностей троякого рода меры: пространственности, веса и времени. Е. меры называется такая основная мера, которой или частями которой измеряются другие величины того же рода. В новейшее время к … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Измерения и измерительные приборы — Законы явлений природы, как выражения количественных отношений между факторами явлений, выводятся на основании измерений этих факторов. Приборы, приспособленные к таким измерениям, называются измерительными. Всякое измерение, какой бы ни было… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

Источник