Единицей измерения момента инерции может быть

Содержание
  1. Момент инерции
  2. Содержание
  3. Осевой момент инерции
  4. Теорема Гюйгенса-Штейнера
  5. Осевые моменты инерции некоторых тел
  6. Вывод формул
  7. Безразмерные моменты инерции планет и их спутников
  8. Центробежный момент инерции
  9. Геометрический момент инерции
  10. Центральный момент инерции
  11. Тензор инерции и эллипсоид инерции
  12. См. также
  13. Примечания
  14. Литература
  15. Ссылки
  16. Смотреть что такое «Момент инерции» в других словарях:
  17. Физический смысл момента инерции
  18. Момент инерции и его физический смысл
  19. Единицы измерения в системе СИ
  20. Как рассчитать момент инерции, формула
  21. Виды моментов инерции
  22. Момент инерции тела относительно оси вращения
  23. Моменты инерции простейших объектов
  24. Примеры решения задач
  25. Момент инерции в физике
  26. Что такое инерция?
  27. Определение момента инерции
  28. Формула момента инерции
  29. Теорема Гюйгенса – Штейнера
  30. Моменты инерции простейших объектов
  31. Рекомендованная литература и полезные ссылки
  32. Момент инерции, видео
  33. Единицы измерения момента инерции
  34. Килограмм, умноженный на метр в квадрате — единица измерения момента инерции в системе СИ
  35. Грамм — сантиметр в квадрате — единица измерения момента инерции в системе СГС
  36. Момент инерции, не имеющий единицы измерения
  37. Примеры задач с решением
  38. Момент инерции — формулировка, свойства и методы решения
  39. Основные понятия и суть
  40. Вычисление параметра
  41. Методика решения
  42. Моменты простейших объектов
  43. Теорема Гюйгенса — Штейнера
  44. Пример задачи

Момент инерции

Момент инерции — скалярная физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Различают несколько моментов инерции — в зависимости от многообразия, от которого отсчитывается расстояние точек.

Содержание

Осевой момент инерции

Моментом инерции механической системы относительно неподвижной оси («осевой момент инерции») называется величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси:

,

Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси подобно тому, как масса тела является мерой его инертности в поступательном движении.

,

  • — масса малого элемента объёма тела ,
  • — плотность,
  • — расстояние от элемента до оси a.

Если тело однородно, то есть его плотность всюду одинакова, то

Теорема Гюйгенса-Штейнера

Момент инерции твёрдого тела относительно какой-либо оси зависит не только от массы, формы и размеров тела, но также от положения тела по отношению к этой оси. Согласно теореме Штейнера (теореме Гюйгенса-Штейнера), момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:

,

где — полная масса тела.

Например, момент инерции стержня относительно оси, проходящей через его конец, равен:

Осевые моменты инерции некоторых тел

Момент инерции
Размерность
Моменты инерции однородных тел простейшей формы относительно некоторых осей вращения
Тело Описание Положение оси a Момент инерции Ja
Материальная точка массы m На расстоянии r от точки, неподвижная
Полый тонкостенный цилиндр или кольцо радиуса r и массы m Ось цилиндра
Сплошной цилиндр или диск радиуса r и массы m Ось цилиндра
Полый толстостенный цилиндр массы m с внешним радиусом r2 и внутренним радиусом r1 Ось цилиндра
Сплошной цилиндр длины l, радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс
Полый тонкостенный цилиндр (кольцо) длины l, радиуса r и массы m Ось перпендикулярна к цилиндру и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его центр масс
Прямой тонкий стержень длины l и массы m Ось перпендикулярна к стержню и проходит через его конец
Тонкостенная сфера радиуса r и массы m Ось проходит через центр сферы
Шар радиуса r и массы m Ось проходит через центр шара
Конус радиуса r и массы m Ось конуса
Равнобедренный треугольник с высотой h, основанием a и массой m Ось перпендикулярна плоскости треугольника и проходит через вершину
Правильный треугольник со стороной a и массой m Ось перпендикулярна плоскости треугольника и проходит через центр масс
Квадрат со стороной a и массой m Ось перпендикулярна плоскости квадрата и проходит через центр масс

Вывод формул

Тонкостенный цилиндр (кольцо, обруч)

Момент инерции тела равен сумме моментов инерции составляющих его частей. Разобъём тонкостенный цилиндр на элементы с массой dm и моментами инерции dJi. Тогда

Поскольку все элементы тонкостенного цилиндра находятся на одинаковом расстоянии от оси вращения, формула (1) преобразуется к виду

Толстостенный цилиндр (кольцо, обруч)

Пусть имеется однородное кольцо с внешним радиусом R, внутренним радиусом R1, толщиной h и плотностью ρ. Разобьём его на тонкие кольца толщиной dr. Масса и момент инерции тонкого кольца радиуса r составит

Момент инерции толстого кольца найдём как интеграл

Поскольку объём и масса кольца равны

получаем окончательную формулу для момента инерции кольца

Однородный диск (сплошной цилиндр)

Рассматривая цилиндр (диск) как кольцо с нулевым внутренним радиусом (R1 = 0), получим формулу для момента инерции цилиндра (диска):

Разобьём конус на тонкие диски толщиной dh, перепендикулярные оси конуса. Радиус такого диска равен

где R – радиус основания конуса, H – высота конуса, h – расстояние от вершины конуса до диска. Масса и момент инерции такого диска составят

Сплошной однородный шар

Разобъём шар на тонкие диски толщиной dh, перпендикулярные оси вращения. Радиус такого диска, расположенного на высоте h от центра сферы, найдём по формуле

Масса и момент инерции такого диска составят

Момент инерции сферы найдём интегрированием:

Для вывода воспользуемся формулой момента инерции однородного шара радиуса R:

Вычислим, насколько изменится момент инерции шара, если при неизменной плотности ρ его радиус увеличится на бесконечно малую величину dR.

Тонкий стержень (ось проходит через центр)

Разобъём стержень на малые фрагменты длиной dr. Масса и момент инерции такого фрагмента равна

Тонкий стержень (ось проходит через конец)

При перемещении оси вращения из середины стержня на его конец, центр тяжести стержня перемещается относительно оси на расстояние l/2. По теореме Штейнера новый момент инерции будет равен

Безразмерные моменты инерции планет и их спутников

Большое значение для исследований внутренней структуры планет и их спутников имеют их безразмерные моменты инерции. Безразмерный момент инерции тела радиуса r и массы m равен отношению его момента инерции относительно оси вращения к моменту инерции материальной точки той же массы относительно неподвижной оси вращения, расположенной на расстоянии r (равному mr 2 ). Эта величина отражает распределение массы по глубине. Одним из методов её измерения у планет и спутников является определение допплеровского смещения радиосигнала, передаваемого АМС, пролетающей около данной планеты или спутника. Для тонкостенной сферы безразмерный момент инерции равен 2/3 (

0,67), для однородного шара — 0,4, и вообще тем меньше, чем большая масса тела сосредоточена у его центра. Например, у Луны безразмерный момент инерции близок к 0,4 (равен 0,391), поэтому предполагают, что она относительно однородна, её плотность с глубиной меняется мало. Безразмерный момент инерции Земли меньше, чем у однородного шара (равен 0,335), что является аргументом в пользу существования у неё плотного ядра. [3] [4]

Центробежный момент инерции

Центробежными моментами инерции тела по отношению к осям прямоугольной декартовой системы координат называются следующие величины:

Ось OX называется главной осью инерции тела, если центробежные моменты инерции Jxy и Jxz одновременно равны нулю. Через каждую точку тела можно провести три главные оси инерции. Эти оси взаимно перпендикулярны друг другу. Моменты инерции тела относительно трёх главных осей инерции, проведённых в произвольной точке O тела, называются главными моментами инерции тела.

Главные оси инерции, проходящие через центр масс тела, называются главными центральными осями инерции тела, а моменты инерции относительно этих осей — его главными центральными моментами инерции. Ось симметрии однородного тела всегда является одной из его главных центральных осей инерции.

Геометрический момент инерции

Геометрический момент инерции — геометрическая характеристика сечения вида

где — расстояние от центральной оси до любой элементарной площадки относительно нейтральной оси.

Геометрический момент инерции не связан с движением материала, он лишь отражает степень жесткости сечения. Используется для вычисления радиуса инерции, прогиба балки, подбора сечения балок, колонн и др.

Единица измерения СИ — м 4 . В строительных расчетах, литературе и сортаментах металлопроката в частности указывается в см 4 .

Из него выражается момент сопротивления сечения:

.

Геометрические моменты инерции некоторых фигур
Прямоугольника высотой и шириной :

Прямоугольного коробчатого сечения высотой и шириной по внешним контурам и , а по внутренним и соответственно

Круга диаметром

Центральный момент инерции

Центральный момент инерции (или момент инерции относительно точки O) — это величина

,

  • — масса малого элемента объёма тела ,
  • — плотность,
  • — расстояние от элемента до точки O.

Центральный момент инерции можно выразить через главные осевые или центробежные моменты инерции: .

Тензор инерции и эллипсоид инерции

Момент инерции тела относительно произвольной оси, проходящей через центр масс и имеющей направление, заданное единичным вектором , можно представить в виде квадратичной (билинейной) формы:

(1),

где — тензор инерции. Матрица тензора инерции симметрична, имеет размеры и состоит из компонент центробежных моментов:

,
.

Выбором соответствующей системы координат матрица тензора инерции может быть приведена к диагональному виду. Для этого нужно решить задачу о собственных значениях для матрицы тензора :
,
где — ортогональная матрица перехода в собственный базис тензора инерции. В собственном базисе координатные оси направлены вдоль главных осей тензора инерции, а также совпадают с главными полуосями эллипсоида тензора инерции. Величины — главные моменты инерции. Выражение (1) в собственной системе координат имеет вид:

,

откуда получается уравнение эллипсоида в собственных координатах. Разделив обе части уравнения на

и произведя замены:

,

получаем канонический вид уравнения эллипсоида в координатах :

Расстояние от центра эллипсоида до некоторой его точки связано со значением момента инерции тела вдоль прямой, проходящей через центр эллипсоида и эту точку:

См. также

Примечания

  1. Planetary Fact Sheet
  2. Showman, Adam P.; Malhotra, Renu (1999). «The Galilean Satellites» (PDF). Science286 (5437): 77–84. DOI:10.1126/science.286.5437.77. PMID 10506564.
  3. Галкин И.Н. Внеземная сейсмология. — М .: Наука, 1988. — С. 42-73. — 195 с. — (Планета Земля и Вселенная). — 15 000 экз. — ISBN 502005951X
  4. Пантелеев В. Л. Физика Земли и планет. Гл. 3.4 — Гравитационное поле планеты

Литература

  • Матвеев. А. Н. Механика и теория относительности. М.: Высшая школа, 1986. (3-е изд. М.: ОНИКС 21 век: Мир и Образование, 2003. — 432с.) http://www.alleng.ru/d/phys/phys108.htm
  • Трофимова Т. И. Курс физики. — 7-е изд. — М.: Высшая школа, 2001. — 542 с.
  • Алешкевич В. А., Деденко Л. Г., Караваев В. А. Механика твердого тела. Лекции. Издательство Физического факультета МГУ, 1997. http://nature.web.ru/db/msg.html?mid=1186208&s=120000000
  • Павленко Ю. Г. Лекции по теоретической механике. М.: ФИЗМАТЛИТ, 2002. — 392с. http://www.alleng.ru/d/phys/phys99.htm
  • Яворский Б. М., Детлаф А. А. Физика для школьников старших классов и поступающих в вузы: учебное пособие — М.: Дрофа, 2002, 800с. ISBN 5-7107-5956-3
  • Сивухин Д. В. Общий курс физики. В 5 т. Том I. Механика. 4-е изд. М.: ФИЗМАТЛИТ; Изд-во МФТИ, 2005. — 560 с. http://www.alleng.ru/d/phys/phys103.htm
  • Беляев Н. М., Сопротивление материалов. Главная редакция физико-математической литературы изд-ва «Наука», 1976. — 608 с.

Ссылки

Wikimedia Foundation . 2010 .

Смотреть что такое «Момент инерции» в других словарях:

МОМЕНТ ИНЕРЦИИ — величина, характеризующая распределение масс в теле и являющаяся наряду с массой мерой инертности тела при непоступат. движении. В механике различают М. и. осевые и центробежные. Осевым М. и. тела относительно оси z наз. величина, определяемая… … Физическая энциклопедия

МОМЕНТ ИНЕРЦИИ — МОМЕНТ ИНЕРЦИИ, механическая величина, играющая при вращательном движении ту же роль, что масса при движении поступательном. Например ускорение при поступательном движении обратно пропорционально массе, ускорение вращательного движения (угловое… … Большая медицинская энциклопедия

МОМЕНТ ИНЕРЦИИ — МОМЕНТ ИНЕРЦИИ, мера инертности твердых тел при вращательном движении (подобно тому как масса является мерой инертности при поступательном движении). При заданной массе тела момент инерции зависит как от распределения этой массы по объему тела,… … Современная энциклопедия

МОМЕНТ ИНЕРЦИИ — величина, характеризующая распределение масс в теле и являющаяся наряду с массой мерой инертности тела при непоступат. движении. Различают осевые и центробежные моменты инерции. Осевой момент инерции равен сумме произведений масс mi всех… … Большой Энциклопедический словарь

Момент инерции — МОМЕНТ ИНЕРЦИИ, мера инертности твердых тел при вращательном движении (подобно тому как масса является мерой инертности при поступательном движении). При заданной массе тела момент инерции зависит как от распределения этой массы по объему тела,… … Иллюстрированный энциклопедический словарь

МОМЕНТ ИНЕРЦИИ — (обозначение I), для вращающегося тела сумма произведений, полученных путем умножения масс точек вращающегося тела на квадраты их расстояний от оси вращения. Нахождение этого распределения массы важно при определении силы, необходимой, чтобы… … Научно-технический энциклопедический словарь

Момент инерции — – величина, характеризующая распределение масс в теле и являющаяся, наряду с массой, мерой инертности тела при непоступательном движении. [Полякова, Т.Ю. Автодорожные мосты: учебный англо русский и русско английский терминологический… … Энциклопедия терминов, определений и пояснений строительных материалов

момент инерции — 3.24 момент инерции (moment of inertia): Интегральная сумма произведений массы отдельных частей тела на квадраты расстояний (радиусов) их центров тяжести от заданной оси. Источник: ГОСТ Р 52776 2007: Машины электрические вращающиеся. Номинальные… … Словарь-справочник терминов нормативно-технической документации

Момент инерции — (Moment d inertie, Trägheitsmoment, Moment of inertia) понятие это введено в науку Эйлером, хотя уже Гюйгенс раньше пользовался выражением того же рода, не давая ему особого названия: один из путей, приводящий к его определению, следующий.… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

момент инерции — величина, характеризующая распределение масс в теле и являющаяся наряду с массой мерой инертности тела при непоступательном движении. Различают осевые и центробежные моменты инерции. Осевой момент инерции равен сумме произведений масс mi всех… … Энциклопедический словарь

Источник

Физический смысл момента инерции

Когда тело продолжает двигаться при отсутствии на него воздействия каких-либо сил, говорят о проявлении инерции. Именно ею объясняются трудности удержаться на ногах при резком торможении автобуса или усидеть в седле велосипеда, когда под колеса резко выбегает кот. Кроме инерции, проявляющейся при движении тел по прямой, аналогичное явление бывает при вращении вокруг оси. В таком случае в физике говорят о моменте инерции – скалярной величине, измеряющей инертность тела при осевом вращении.

Момент инерции и его физический смысл

Обеспечить поступательное движение предмета при его толкании будет тем тяжелее, чем больше он весит. Аналогичные эксперименты предусматривались школьной программой и относились к прямо направленному действию.

Было понятно, что именно масса тела характеризует степень его инертности и является ее мерой.

При совершении предметом вращательных движений наблюдается иной вид зависимости. В данном случае мерой инертности выступает момент инерции.

Момент инерции – скалярная измеряемая характеристика инертности тела в момент совершения осевого вращения.

Задачи по определению величины момента инерции решаются с помощью теоремы Гюйгенса-Штейнера, смысл которой заключается в следующем:

МИ для тела, вращающегося вокруг какой-либо оси, равна сумме слагаемых единиц: момент инерции предмета, который вращается вокруг оси, параллельной данной, и проходящей через центр масс, а также произведения массы на расстояние между осями, возведенное в квадрат.

В приведенной формуле используются следующие обозначения: d – расстояние между осями, m – масса тела, Iz – момент инерции относительно рассматриваемой оси, а Ic – относительно оси, которая проходит через центр масс. В профильной литературе и учебниках буква I может заменяться J.

Формулировка способа количественного измерения момента инерции при осевом вращении предмета стала возможной в результате работы двух ученых-математиков: Гюйгенса и Штейнера. Теорема дает возможность быстрого решения задач на определение инерции предмета любой формы, для которого уже просчитана центробежная сила. Формула Штейнера позволяет вычислить момент инерции этого предмета относительно выбранной оси, проходящей параллельно прямой, следующей через центр фигуры.

Единицы измерения в системе СИ

Единицей измерения момента инерции, принятой в системе СИ, является кг, умноженный на метр в квадрате — кг·м². В еще одной системе измерения (СГС) единицей измерения является грамм на квадратный сантиметр — г·см².

Как рассчитать момент инерции, формула

Измерение значения момента инерции можно произвести теоретически, согласно формуле. Для этого условно движущийся предмет разбивается на мелкие составляющие, масса которых обозначается dm. В конечном итоге момент инерции (МИ) равняется сумме произведений всех образовавшихся масс на расстояние до оси, возведенное в квадрат.

Исходя из этой формулы, момент инерции, кроме массы тела, определяется положением оси, вокруг которой предмет вращается, а также его формой и габаритами.

Возможность рассчитать моменты инерции полезна, к примеру, при исследованиях свойств и структуры элементов Солнечной системы. Это так называемый безразмерный момент инерции. Высчитанная по формуле величина дает представление о распределении массы по глубине.

Виды моментов инерции

Кроме безразмерного момента инерции, в физике существуют понятия:

  • центробежный МИ;
  • главный МИ;
  • геометрический МИ;
  • МИ относительно плоскости;
  • центральный МИ;
  • тензор инерции;
  • эллипсоид инерции.

Центробежными МИ относительно прямоугольных осей координат (декартовой системы) считаются Jxy, Jxz, Jyz. Ось ОХ является главной, когда центробежные моменты инерций Jxy и Jxz равняются нулям.

Любая точка тела может являться центром трех главных осей инерции. Они характеризуются взаимной перпендикулярностью. МИ относительно них считается главным для данного предмета. Главные оси, которые пролегают через центр масс, — являются главными центральными осями инерции предмета. МИ относительно них – главные центральные МИ. Для однородного тела ось симметрии всегда является главной центральной осью инерции.

Для геометрических МИ существуют формулы, основывающиеся на объеме относительно оси и площади относительно оси.

Твердое тело может иметь МИ относительно плоскости. Тогда это – скалярная величина, которая рассчитывается суммированием произведений массы каждой точки предмета и расстояния от нее до плоскости, возведенного в квадрат.

Понятие «Центрального МИ» связано с точкой О, МИ относительно полюса либо полярным МИ.

Момент инерции тела относительно оси вращения

МИ служит единицей измерения инерции тела, которое вращается вокруг оси, подобно тому, как масса является мерой при поступательном движении.

Определить МИ предметов касательно оси вращения позволяет формула Штейнера.

Пример:

Наглядное подтверждение применения формулы Штейнера – расчет МИ стержня, ось вращения которого проходит через конец.

Моменты инерции простейших объектов

Момент инерции некоторых однородных тел, имеющих простую форму, в зависимости от характеристик осей вращения можно определить по следующим формулам:

  1. МИ точечного предмета либо полого цилиндра с тонкими стенками (с массой m и радиусом r) = mr 2
  2. МИ диска или сплошного цилиндра = 1/2 mr 2
  3. МИ цилиндра с толстыми стенками, у которого внешний радиус обозначен r2, а внутренний – r1, :

Примеры решения задач

Применение на практике приведенных формул происходит, например, для решения следующих задач.

Пример №1

Задано найти МИ однородного диска с известными массой и радиусом. Из дополнительных сведений: ось вращения – через центр диска.

Для решения диск разбивается на тонкие кольца, радиусы которых равняются от 0 до R. Взяв одно из них и обозначив его радиус буквой \(r\) , а массу – \(dm\) , формула для расчета МИ (согласно теореме Гюйгенса-Штейнера) выглядит следующим образом: \(dJ=dmr2.\)

С учетом подстановки в конечную формулу для определения МИ формулы для массы кольца получаем:

Пример № 2

Задано найти у того же диска МИ относительно оси, которая проходит через середину радиуса.

Из предшествующего задания используем найденную величину МИ относительно оси, которая проходит через центр масс. Используя формулу Штейнера, решаем задачу.

Если решать аналогичные задачи нет желания или времени, а контрольную работу нужно сдать в срок, на помощь придут сотрудники Феникс.Хелп.

Жизнь слишком коротка, чтобы самому делать всю работу!

Получите помощь лучших авторов по вашей теме

Источник

Момент инерции в физике

Содержание:

Что такое инерция?

Инерция в физике – способность тел определенное время сохранять состояние движения при отсутствии действия внешних сил. Впрочем, понятие инерции имеет частое применение не только в физике, но и в нашей повседневной жизни. Так обычно «инертным» называют человека, который совершенно не проявляет никакой инициативы, делают только то, что ему скажут другие, и делает это крайне медленно, без какого-либо энтузиазма. «Движется по инерции», – говорим мы, когда хотим подчеркнуть, что что-то делается без какого-либо смысла, а просто потому, что так было заведено когда-то или в силу наработанной годами привычки. И если с понятием инерции все более-менее понятно, благодаря таким вот житейским примерам, то термин «момент инерции» требует более детального пояснения, чем мы и займемся в нашей статье.

Определение момента инерции

Со школьной программы по физике мы прекрасно знаем, что масса тела является мерой его инертности. Например, если в супермаркете сильно толкнуть две тележки, одна из которых будет пустой, а вторая нагруженной разными товарами, то впоследствии остановить будет труднее тележку, нагруженную товарами в силу ее большей массы. Другими словами, чем больше у тела масса, тем большее на него воздействие инерции и тем больше нужно сил, чтобы изменить движение такого тяжелого тела.

В приведенном примере тележка движется по прямой линии, то есть иными словами совершает поступательное движение. И если при поступательном движении какого-либо теле его масса является мерой его инерции, то при вращательном движении тела вокруг своей оси мерой его инерции будет величина, которая собственно и называется – момент инерции.

Момент инерции – скалярная физическая величина, мера инертности тела при его вращении вокруг оси. Обычно обозначается буквой J и измеряется в килограммах, умноженных на квадратный метр. Такое академическое определение того, что такое момент инерции.

Формула момента инерции

Как рассчитать точное значение момента инерции? Для этого есть общая формула, помогающая физикам определять момент инерции любого тела. Если тело разбить на бесконечно маленькие кусочки с массой dm, то момент инерции будет равным сумме произведения этих элементарных масс на квадрат расстояния до оси вращения. Формула будет иметь такой вид:

J – момент инерции, r – расстояние до оси вращения.

Для материальной точки массы m, которая вращается вокруг оси на расстоянии r, данная формула будет иметь такой вид:

Теорема Гюйгенса – Штейнера

Говоря о моменте инерции невозможно не упомянуть о теореме двух математиков Гюйгенсе и Штейнере, которые дали формулировку определению характеристики параллельных осей.

Теорема Гюйгенса – Штейнера гласит: момент инерции тела относительно произвольной оси равен сумме момента инерции тела относительно оси, проходящей через центр масс параллельно произвольной оси и произведения массы тела на квадрат расстояния между осями.

Если записать вышесказанное математической формулой, то получится следующее:

Где d – расстояние между осями

Эта теорема значительно облегчает решения многих физических задач, связанных с инерцией. К примеру, у Вас имеется объект произвольной формы, центробежная сила которого известна. При помощи формулы Штейнера можно вычислить момент инерции тела относительно любой оси параллельной линии, которая проходит через середину фигуры.

Моменты инерции простейших объектов

Несмотря на внешнюю простоту, вычисление моментов инерции для разных предметов предполагает знание интегралов, этих важных инструментов высшей математики. Для упрощения задачи создана таблица с вычислениями инерции для простых геометрических фигур: круга, квадрата, цилиндра и т. д.

Так выглядят математические расчеты вычисления моментов инерции для круга и кольца.

Аналогичным образом будет рассчитываться момент инерции цилиндра.

Предлагаем вашему вниманию более детальную таблицу с формулами для расчета момента инерции для основных геометрических фигур: шара, сферы, диска, цилиндров, и т. д.

Рекомендованная литература и полезные ссылки

  • Тарг С. М. Момент инерции // Физическая энциклопедия / Гл. ред. А. М. Прохоров. — М.: Большая Российская энциклопедия, 1992. — Т. 3. — С. 206—207. — 672 с. — 48 000 экз. — ISBN 5-85270-019-3.
  • Showman, Adam P.; Malhotra, Renu. The Galilean Satellites (англ.) // Science. — 1999. — Vol. 286, no. 5437. — P. 77—84. — DOI:10.1126/science.286.5437.77. — PMID 10506564.
  • Margot, Jean-Luc; et al. Mercury’s moment of inertia from spin and gravity data (англ.) // Journal of Geophysical Research (англ.)русск. : journal. — 2012. — Vol. 117. — DOI:10.1029/2012JE004161.
  • Галкин И.Н. Внеземная сейсмология. — М.: Наука, 1988. — С. 42-73. — 195 с. — (Планета Земля и Вселенная). — 15 000 экз. — ISBN 502005951X.
  • Матвеев. А. Н. Механика и теория относительности. М.: Высшая школа, 1986. (3-е изд. М.: ОНИКС 21 век: Мир и Образование, 2003. — 432с.)
  • Трофимова Т. И. Курс физики. — 7-е изд. — М.: Высшая школа, 2001. — 542 с.
  • Алешкевич В. А., Деденко Л. Г., Караваев В. А. Механика твердого тела. Лекции. Издательство Физического факультета МГУ, 1997.
  • Павленко Ю. Г. Лекции по теоретической механике. М.: ФИЗМАТЛИТ, 2002. — 392с.
  • Яворский Б. М., Детлаф А. А. Физика для школьников старших классов и поступающих в вузы: учебное пособие — М.: Дрофа, 2002, 800с. ISBN 5-7107-5956-3

Момент инерции, видео

И в завершение образовательное видео по теме нашей статьи.

Эта статья доступна на английском языке – Moment of Inertia.

Источник

Единицы измерения момента инерции

Моментом инерции тела, совершающего вращательные движения вокруг некоторой оси называют физическую величину ($J$), равную:

где $<\Delta m>_i$ — масса $i$ — той материальной точки, которая является частью рассматриваемого тела; $r^2_i$ — расстояние в квадрате от $i$- той материальной точки до оси вращения тела.

Число материальных точек, на которое разбито тело равно в нашем случае $k$. Если тело непрерывно и однородно, то:

где $r$ — функция положения материальной точки в пространстве; $\rho $ — плотность тела; $dV$ -объем элемента тела.

Килограмм, умноженный на метр в квадрате — единица измерения момента инерции в системе СИ

Проще всего единицу измерения момента инерции тела определить, если рассмотреть материальную точку, вращающуюся вокруг неподвижной оси:

где $m$ — масса материальной точки; $r$ — расстояние от нее до оси вращения.

Из выражения (3) очевидно, что:

Килограмм — метр в квадрате — единица измерения момента инерции в Международной системе единиц. Эта единица является производной в системе СИ. Килограмм — метр в квадрате — это момент инерции материальной точки, имеющей массу один килограмм, движущейся по окружность радиуса 1 метр, вокруг оси вращения.

Грамм — сантиметр в квадрате — единица измерения момента инерции в системе СГС

Если принять во внимание, что основными единицами измерения в системе СГС являются сантиметр, грамм и секунда, то используя определение момента инерции материальной точки (3), получим, что грамм — сантиметр в квадрате — единица измерения момента инерции в системе СГС:

Грамм, умноженный на сантиметр в квадрате — это момент инерции материальной точки, имеющей массу один грамм, находящейся на расстоянии один сантиметр от оси вращения.

Грамм-сантиметр в квадрате соотносится с единицей измерения момента инерции системы СИ как:

Момент инерции, не имеющий единицы измерения

Безразмерный момент инерции используют при изучении и описании движения и структуры небесных тел (планет, спутников и т. д). Безразмерным моментом инерции называют физическую величину, равную отношению момента инерции тела, обладающего радиусом $r$ и массой $m$, вращающегося около оси, к моменту инерции материальной точки равной массы ($m$), вращающейся относительно оси находящейся от точки на расстоянии $r$. Безразмерный момент инерции отображает распределение массы по глубине.

Тонкостенная сфера имеет безразмерный момент инерции равный $\frac<2><3>$. Если масса тела сконцентрирована ближе к центру тела, то его безразмерный момент инерции меньше. У Луны имеющей структуру близкую к однородной, безразмерный момент инерции равен 0,391. Земля, обладающая плотным ядром, имеет безразмерный момент инерции 0,335.

Примеры задач с решением

Задание. Каким будет единица измерения момента инерции материальной точки, которая вращается около неподвижной оси, если получить ее из основного закона динамики вращательного движения?

Решение. Формулу закона динамики вращательного движения для материальной точки представим как:

где $\overline$ — суммарный момент сил, который действует на точку; $\overline<\varepsilon \ >$ — угловое ускорение с которым точка движется. Выразим момент инерции из (2.1):

Единицей измерения момента сил в системе СИ является:

Угловое ускорение материальной точки найдем как:

где $a_<\tau >$ — тангенциальное ускорение точки; R — радиус окружности, по которой точка перемещается.

В соответствии с выражением (1.3) имеем:

Ответ. Исходя из основного закона динамики вращательного движения, получаем, что в системе СИ момент инерции измеряется в килограммах, умноженных на метр в квадрате.

Задание. Вычислите момент инерции Земного шара относительно его оси вращения. Считайте массу Земли и ее радиус известными. ($M_Z=5,97\cdot <10>^<24>кг;;\ R_Z=6371\ км$). Выразите момент инерции в $т\cdot м^2$ (тонна, умноженная на метр в квадрате)

Решение. Будем считать Землю однородным шаром. Найдем момент инерции шара, относительно оси, которая проходит через центр. Разобьем шара на диски (рис.1) толщина которых составляет $dh$, радиус ($r)\ $дисков изменяется, плоскости дисков которые перпендикулярны оси вращения.

Из рис.1 очевидно, что:

при этом -R$\le h\le $R.

Элементарный момент инерции (диска) запишем как:

где масса выделенного диска ($dm=\rho dV$) равна:

\[dm=\rho \pi r^2dh\ \left(2.3\right).\]

Получим момент инерции шара, относительно оси, которая проходит через его центр масс, интегрируя выражение (2.4) по объему шара:

Плотность однородного шара равна:

то выражение (2.5) преобразуем к виду:

Окончательно формулу для нахождения момента инерции Земного шара запишем как:

Вычислим момент инерции Земли:

Для того, чтобы выразить момент инерции в $т\cdot м^2$, используем соотношение:

\[1\ т=1000\ кг,\ следовательно,\ 1\ т\cdot м^2=1000\ кг\cdot м^2.\]

Ответ. $J=9,7\cdot <10>^<34>т\cdot м^2$

Источник

Момент инерции — формулировка, свойства и методы решения

Основные понятия и суть

Инерция — это способность тела сохранять приданную ей скорость движения при отсутствии какого-либо внешнего воздействия. Например, во время езды на общественном транспорте всем приходится держаться за поручни. Если этого не сделать, то при изменении скорости движения транспортного средства существует большая вероятность упасть вперёд или назад. Другими словами, возникает какая-то сила, влияющая на пассажира. Когда её действие заканчивается, движение человека всё равно продолжается.

Это свойство и описывается понятием инертность. Раньше изучали это явление известные учёные Галилей, Ньютон, Мах. В соответствии с их исследованиями было установлено классическое правило момента вращения, физический смысл которого заключается в распределении массы в теле, определяемой суммой произведения простейшей массы на расстояние до начального множества в квадрате. Классическая формула, описывающая характеристику, выглядит следующим образом: Ja = Σmi*r 2 j. В ней:

  • mi — масса в точке;
  • rj — расстояние от точки до координаты.

То есть момент — это скалярная величина, являющаяся мерой инертности. В качестве единицы измерения по международной системе принято использовать произведение килограмма на квадратный метр (кг*м²). Обозначают параметр латинской буквой I или J. При умножении момента инерции на угловое ускорение можно определить сумму моментов всех сил, приложенных к телу: M = I * E. Фактически это уравнение является аналогом второго закона Ньютона.

М — это момент силы, оказывающий вращательное движение и воздействующий на ускорение тела, а E — угловое ускорение. Мера инертности тела отличается от массы тем, что вторая проявляется, когда его необходимо разогнать, а первая — при его раскручивании.

Вычисление параметра

Характеристика инерции тел зависит от их количественных показателей и формы. Для того чтобы найти характеристику, можно рассмотреть вращение материальной точки, находящейся на невесомой штанге, имеющей длину r и массу m. Для такой ситуации формулу момента инерции можно записать: I = m*r 2 . Длина r представляет собой радиус кольца, по которому происходит вращение объекта по оси. Таким образом, рассматриваемый момент зависит не только от массы тела, но и геометрических характеристик.

Любое тело можно описать совокупностью материальных точек. Для понятия процесса лучше всего рассмотреть простой пример. Пусть имеется невесомый цилиндр, способный вращаться по радиусу Rc. На него намотана верёвка, к которой приложена сила F. На цилиндр будут насаживаться тела с различной формой. Если известны его радиус и сила, с которой происходит раскручивание, то справедливо будет записать следующее выражение: M = F*Rc.

Допустим, на цилиндр помещены два тела. Одно имеет массу m1 и радиус вращения r1, а другое — m2 и r2. Используя основное уравнение динамики вращательного движения для первого тела с угловым ускорением ƹ1, момент силы можно определить как M1 = I1 * ƹ1. Соответственно, для второго предмета сила будет определяться по формуле: M1 = I2 * ƹ2.

Если эти два тела жёстко скрепить между собой, то они буду представлять собой составные части одного предмета, поэтому их угловые ускорения станут одинаковы (ƹ1 + ƹ2 = ƹ), а требующийся момент M станет равный сумме M1 + M2. Подставив значения, получим равенство M = I1*ƹ + I2*ƹ. Выражение можно упростить до вида M = ƹ (I1+I2). То есть нужный момент для тела, состоящего из совокупности точек, будет равен произведению суммы моментов инерции на угловое ускорение обоих тел.

Из сказанного можно сделать вывод, что момент инерции всего тела равен сумме моментов составных частей. Другим словами, он обладает свойством аддитивности. Используя это, можно составить алгоритм расчёта для любой формы.

Методика решения

Существует универсальный алгоритм, подходящий для расчёта параметра прямоугольника, треугольника, круга или другой фигуры произвольной формы. Допустим, есть сложное тело с заданной осью вращения. Необходимо найти момент его вращения. Для того чтобы решить поставленную задачу, используются два принципа:

  • Аддитивность — свойство, обозначающее, что величина целого значения определяется суммой соответствующих ему частей.
  • Формула нахождения момента для материальной точки I = m*r 2 .

Всё тело можно разделить на мельчайшие частички, которые представляют собой материальные точки. Номера этих кусков обозначают в виде i. Масса произвольной части будет определяться как дельта mi. Пусть этот кусок находится на расстоянии ri от оси вращения O. Для этой части момент вращения находится с помощью выражения Ii = Δ mi*ri 2 . Учитывая аддитивность, общий момент будет равен I = Σ Δ mi*ri 2 , где i принимает значение от 1 до n.

Эта формула является приближённой, так как точность зависит от массы частей и размера. Если кусочки, на которые разбивается тело, большие, считать их материальными точками нельзя. Чем мельче части, тем точнее будет результат. В соответствии с математическим анализом такие задачи решаются с помощью интегрирования. Понимая физический смысл момента инерции, можно отметить следующие зависимости:

  • прямая пропорциональность массе;
  • соответствие квадрату размера;
  • изменение с учетом оси вращения.

Роль последнего пункта огромна. Например, если рассмотреть два момента вращения велосипедной спицы диаметром 2 мм и длиной 30 сантиметров, то можно увидеть зависимость от выбранной оси поворота.

Относительно вертикальной оси вращение обозначим I1, горизонтальной — I2. Подставив в формулы выражения, используемые для расчётов, можно получить отношение I1/I2 = (m*l2/12) / ((m*d2/8). После его упрощения будет верна запись I1/ I2 = (2/3)*(l/d)2. В итоге получится ответ 15000. Получается, если спицу будут закручивать с одинаковым моментом вокруг вертикальной оси и горизонтальной, то в первом случае она станет крутиться в 15 тыс. раз быстрее.

Моменты простейших объектов

Проведение интегрирования — довольно трудная операция, предполагающая хорошее знание высшей математики. Существует таблица, в которой собраны вычисления инерции для простейших геометрических фигур. При взятии сведений из неё важно обращать внимание на то, относительно какой оси приводится момент вращения объекта. Характеристика инерции для наиболее используемых объектов в физике имеет следующий вид:

  1. Кольцо. Предположив, что точка имеет симметричное значение с противоположной стороны оси, можно утверждать, что формула не изменится. Если же точку распределить по плоскости перпендикулярной оси, то получится кольцо. Оно будет иметь такую же массу с кусками, находящимися на одинаковом расстоянии от центра r. Вычисление момента относительно оси вращения выполняют по той же формуле, что и для материальной точки: I = m * r 2 .
  2. Тонкостенный цилиндр. Нарисовав такую фигуру и указав на ней ось вращения, массу и радиус, несложно будет увидеть, что формула для нахождения момента будет аналогична кольцу.
  3. Диск. Вращение его происходит относительно оси, проходящей через его центр. Учитывая, что масса однородного диска распределена по всей его площади, то момент его будет меньше, чем у кольца. Проведённые расчёты показали, что момент диска будет меньше в два раза. Таким образом, формула выглядит как I = m*r 2 / 2.
  4. Сплошной цилиндр. Получают такую фигуру простым распределением массы сплошного диска вдоль оси. По аналогии с кольцом расчёт его характеристики инерции будет совпадать с однородным диском.
  5. Шар. Момент проходящей оси через центр тяжести равен удвоенному произведению m*r2, разделенному на 5: I = (m*r2) * 2/5.
  6. Сфера. Такой объект отличается от шара лишь тем, что внутри он полый. Направление вращения оси происходит через центр. Значение параметра для неё будет больше, чем шара, так как масса собрана не статически в одном месте, а размещена по всей поверхности. Расчёты показывают, что найти момент можно по формуле I =2*m*r2 /3.
  7. Стержень. Момент вращения проходит через центр вдоль оси, перпендикулярной стержню: I = (1/12) * m*L2. L — длина стержня.

При использовании этих формул необходимо учитывать, что единицей измерения момента инерции является кг* м², поэтому при расчёте величины следует приводить значения к этим единицам.

Теорема Гюйгенса — Штейнера

Теорема была названа в честь двух математиков, давших формулировку определению характеристики параллельных осей. Например, пусть имеется объект произвольной формы, центробежная сила которого известна. Используя формулу Штейнера, можно вычислить момент тела относительно любой оси параллельной линии, проходящей через середину фигуры. В своём выводе учёные опирались на две формулы:

  1. Вычисления координаты центра масс: X = (m1*x1 + m2*x2+…+Mi*Xi) / (m1+m2+…+Mi) = (Σ Δ mi*ri 2 )/ m.
  2. Универсального расчёта инерции любого тела: I = Σ Δ mi*ri 2 .

Обозначив центр произвольной оси буквой O, а один из множества кусков — Δm, можно воспользоваться универсальной формулой. Сначала необходимо определить квадрат расстояния до оси вращения ri. Для этого через центр проведём ось Oц, а расстояние между O и Oц обозначим как d.

Указанные значения нужно выразить через координаты кусочка. Для этого строится ось абсциссы, проходящая через Oц, и ординаты — O. При таком выборе направления начала координат x центр масс равняется d, а у — нулю. Фактически получится прямоугольный треугольник. Воспользовавшись теоремой Пифагора, можно записать: I = Σ Δ mi* (xi2 + yi2).

В результате можно отметить, что момент в точке O будет прямо пропорционален расстоянию между Δ m и центром. Это и есть главный вектор на чертеже. Для его обозначения вводится длина r’.

Находится ri’ 2 по формулам для прямоугольного треугольника, в котором один катет равняется yi, а другой — xi — Oц. Значение ri’ совпадает с длиной гипотенузы. Таким образом, ri’ 2 = (xi — Oц) 2 + yi 2 . Подставив полученное равенство в формулу нахождения параметра момента в центре, можно получить следующую формулу: Io = Σ Δ mi* ((xi — Oц) 2 + yi 2 ). После ряда подстановок и упрощения выражения в итоге получится равенство Io = I + m*x i 2 — 2*m*xi 2 = I — m*xi 2 .

Так как x центра масс совпадает с d, расстоянием между осями, одну из которых можно направить через центр, то формулу можно переписать как Io = I — m*d 2 . Выразив из выражения произвольный момент, формула Штейнера примет вид I = Io + m*d 2 .

Другими словами, теорема определяет, что характеристика инерции тела относительно любой оси находится как сумма моментов относительно параллельной оси, пересекающей центр масс, и произведению массы тела на квадрат расстояния между осями. Сопротивлением вращению пренебрегают.

Пример задачи

Допустим, есть монета с массой m и радиусом r. Вращение происходит вокруг оси, распложенной по касательной. Необходимо найти момент вращения.

Для этого нужно знать характеристику прямой, пересекающей центр монеты Io. Решение будет определяться суммой Io и расстоянием от центра до касательной, которая равняется диаметру монеты: I = Io + md 2 . Фактически задача состоит в нахождении Io. Определяется этот параметр согласно теореме о взаимно перпендикулярных осях.

Момент вращения относительно диска определяется с помощью выражения I1 = m* d 2 / 2. Для решения задачи она будет выглядеть Io = m* d 2 / 4. Подставив все данные, получим: I = (1m*d2 / 4) + (md)2 = 5*m*d2 /4.

Источник

Поделиться с друзьями
Моя стройка
Adblock
detector