Меню

Единицы измерения энергии гамма излучения



Единицы измерения и дозы радиации

Навигация по статье:

Содержание статьи

В каких единицах измеряется радиация и какие допустимые дозы безопасны для человека. Какой радиационный фон является естественным, а какой допустимым. Как перевести одни единицы измерения радиации в другие.

Допустимые дозы радиации

  • допустимый уровень радиоактивного излучения от естественных источников излучения, иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем

В последующие года, радиационный фон должен быть не выше 0,12 мкЗв/час

предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников, является

Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.

В чем измеряется радиация

Для оценки физических свойств радиоактивных материалов применяются такие величины как:

  • активность радиоактивного источника (Ки или Бк)
  • плотность потока энергии (Вт/м 2 )

Для оценки влияния радиации на вещество (не живые ткани), применяются:

  • поглощенная доза (Грей или Рад)
  • экспозиционная доза (Кл/кг или Рентген)

Для оценки влияния радиации на живые ткани, применяются:

  • эквивалентная доза (Зв или бэр)
  • эффективная эквивалентная доза (Зв или бэр)
  • мощность эквивалентной дозы (Зв/час)

Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется — поглощенной дозой.

Поглощенная доза — это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется — Грей (Гр).

1 Грей — это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза — это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется — Кулон/кг (Кл/кг).

1 Кл/кг= 3,88*10 3 Р

Используемая внесистемная единица экспозиционной дозы — Рентген (Р):

1 Р = 2,57976*10 -4 Кл/кг

Доза в 1 Рентген — это образование 2,083*10 9 пар ионов на 1см 3 воздуха

Оценка действия радиации на живые организмы

Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения. Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения. То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными. То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.

Эквивалентная доза — это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется — Зиверт (Зв).

Используемая внесистемная единица эквивалентной дозы — Бэр (бэр): 1 Зв = 100 бэр.

Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.

Для более лучшего понимания, можно немного по-другому дать определение «эквивалентной дозы радиации»:

Эквивалентная доза радиации — это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).

Допустимые нормы радиации

В России, с момента аварии в Чернобыле, наибольшее распространение имела внесистемная единица измерения мкР/час, отражающая экспозиционная дозу, которая характеризует меру ионизации вещества и поглощенную им дозу. Данная величина не учитывает различия в воздействии разных видов радиации (альфа, бета, нейтронного, гама, рентгеновского) на живой организм.

Наиболее объективная характеристика это — эквивалентная доза радиации, измеряемая в Зивертах. Для оценки биологического действия радиации в основном применяется мощность эквивалентной дозы радиации, измеряемая в Зивертах в час. То есть это оценка воздействия радиации на организм человека за единицу времени, в данном случае за час. Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину, указываемую в микро Зивертах — мкЗв/час:

1 Зв/час = 1000 мЗв/час = 1 000 000 мкЗв/час.

Могут применяться величины, характеризующие воздействия радиации за более длительный период, например, за 1 год.

К примеру, в нормах радиационной безопасности НРБ-99/2009 (пункты 3.1.2, 5.2.1, 5.4.4), указана норма допустимого воздействия радиации для населения от техногенных источников 1 мЗв/год.

В нормативных документах СП 2.6.1.2612-10 (пункт 5.1.2) и СанПиН 2.6.1.2800-10 (пункт 4.1.3) указаны приемлемые нормы для естественных источников радиоактивного излучения, величиной 5 мЗв/год. Используемая формулировка в документах — «приемлемый уровень», очень удачная, потому что он не допустимый (то есть безопасный), а именно приемлемый.

Но в нормативных документах есть противоречия по допустимому уровню радиации от природных источников. Если просуммировать все допустимые нормы, указанные в нормативных документах (МУ 2.6.1.1088-02, СанПиН 2.6.1.2800-10, СанПиН 2.6.1.2523-09), по каждому отдельному природному источнику излучения, то получим, что радиационный фон от всех природных источников радиации (включая редчайший газ радон) не должен составлять более 2,346 мЗв/год или 0,268 мкЗв/час. Это подробно рассмотрено в статье «Источники радиоактивных излучений». Однако в нормативных документах СП 2.6.1.2612-10 и СанПиН 2.6.1.2800-10 указана приемлемая норма для природных источников радиации в 5 мЗв/год или 0,57 мкЗ/час.

Как видите, разница в 2 раза. То есть к допустимому нормативному значению 0,268 мкЗв/час, без всяких обоснований применен повышающий коэффициент 2. Это скорее всего связано с тем, что нас в современном мире стали массово окружать материалы (прежде всего строительные материалы) содержащие радиоактивные элементы.

Обратите внимание, что в соответствии с нормативными документами, допустимый уровень радиации от естественных источников излучения 5 мЗв/год, а от искусственных (техногенных) источников радиоактивного излучения всего 1 мЗв/год.

Получается, что при уровне радиоактивного излучения от искусственных источников свыше 1 мЗв/год могут наступить негативные воздействия на человека, то есть привести к заболеваниям. Одновременно нормы допускают, что человек может жить без вреда для здоровья в районах, где уровень выше безопасного техногенного воздействия радиации в 5 раз, что соответствует допустимому уровню радиоактивного естественного фона в 5мЗв/год.

По механизму своего воздействия, видам излучения радиации и степени ее действия на живой организм, естественные и техногенные источники радиации не отличаются.

Все же, о чем говорят эти нормы? Давайте рассмотрим:

  • норма в 5 мЗв/год, указывает, что человек в течении года может максимально получить суммарную дозу радиации, поглощённую его телом в 5 мили Зиверт. В эту дозу не входят все источники техногенного воздействия, такие как медицинские, от загрязнения окружающей среды радиоактивными отходами, утечки радиации на АЭС и т.д.
  • для оценки, какая доза радиации допустима в виде фонового излучения в данный момент, посчитаем: общую годовую норму в 5000 мкЗв (5 мЗв) делим на 365 дней в году, делим на 24 часа в сутки, получим 5000/365/24 = 0,57 мкЗв/час
  • полученное значение 0,57 мкЗв/час, это предельно допустимое фоновое излучение от природных источников, которое считается приемлемым.
  • в среднем радиоактивный фон (он давно уже не естественный) колеблется в пределах 0,11 — 0,16 мкЗв/час. Это нормальный фон радиации.

Можно подвести итог по допустимым уровням радиации, действующим на сегодняшний день:

  • По нормативной документации, предельно допустимый уровень радиации (радиационный фон) от природных источников излучения может составлять 0,57 мкЗ/час.
  • Если не учитывать не обоснованный повышающий коэффициент, а также не учитывать действие редчайшего газа — радона, то получим, что в соответствии с нормативной документацией, нормальный радиационный фон от природных источников радиации не должен превышать 0,07 мкЗв/час
  • предельно допустимой нормативной суммарной дозой, полученной от всех техногенных источников, является 1 мЗв/год.

Можно с уверенность утверждать, что нормальный, безопасный радиационный фон в пределах 0,07 мкЗв/час, действовал на нашей планете до начала промышленного применения человеком радиоактивных материалов, атомной энергетики и атомного оружия (ядерные испытания).

А в результате деятельности человека, мы теперь считаем приемлемым радиационный фон в 8 раз превышающий естественное значение.

Стоит задуматься, что до начала активного освоения человеком атома, человечество не знало, что такое раковые заболевания в таком массовом количестве, как это происходит в современном мире. Если до 1945 года в мире регистрировались раковые заболевания, то их можно было считать единичными случаями по сравнению со статистикой после 1945 года.

Задумайтесь, по данным ВОЗ (всемирной организации здравоохранения), только в 2014 году на нашей планете умерли около 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших, то есть фактически каждый четвертый умерший на нашей планете, это человек умерший от ракового заболевания.

Так же по данным ВОЗ, ожидается, что в ближайшие 20 лет, число новых случаев заболевания раком будет увеличено примерно на 70% по сравнению с сегодняшним днем. То есть рак станет основной причиной смертности. И как бы тщательно, правительство государств с атомной энергетикой и атомным оружием, не маскировали бы общую статистику по причинам смертности от раковых заболеваний. Можно уверенно утверждать, что основной причиной раковых заболеваний, является воздействие на организм человека радиоактивных элементов и излучений.

Для перевода мкР/час в мкЗв/час можно воспользоваться упрощенной формулой перевода:

1 мкР/час = 0,01 мкЗв/час

1 мкЗв/час = 100 мкР/час

0,10 мкЗв/час = 10 мкР/час

Указанные формулы перевода — это допущения, так как мкР/час и мкЗв/час характеризуют разные величины, в первом случае это степень ионизации вещества, во втором это поглощённая доза живой тканью. Данный перевод не корректен, но он позволяет хотя бы приблизительно оценить риск.

Перевод величин радиации

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.

Единицы измерения, применяемые в СМИ

Часто, при публичном объявлении информации о радиационном загрязнении, официальными структурами осознано применяются величины, которые не позволяет объективно оценить степень угрозы. Например, при освещении аварии АЭС Фукусима-1 в Японии, приводятся данные по плотности загрязнения почвы или воды радиоизотопами в Беккерелях на единицу объема, или указывается активность радиоизотопов в Кюри. Данные величины характеризуют лишь сам радиоактивный изотоп, указывая на количество распадов ядер элемента за единицу времени и не дают представления о его потенциальном воздействии на вещество или живые организмы.

Более объективной величиной, которая позволяет оценить степень опасности радиоактивного загрязнения, является указание эквивалентной дозы в Зивертах (Зв), мили Зивертах (мЗв) или микро Зивертах (мкЗв).

Это делается СМИ осознано, потому что, если было бы указано, что радиационный фон в Фукусиме составляет 100 мЗв/час (зарегистрированный факт), это равно 100 000 мкЗв/час, каждый может его сравнить с нормальным радиационным фоном для техногенных источников и понять, что радиационное загрязнение примерно в 1 000 000 раз выше допустимого уровня, который в соответствии с нормативным документом НРБ-99/2009, должен составлять 0,11 мкЗв/час или что соответствует 1000 мкЗв/год или 1 мЗв/год. Это означает, что при нахождении в зоне действия радиации в течении 30 минут, человек получит единовременную дозу радиации, которую он мог получать в течении всей своей жизни. То есть организм подвергся огромному сконцентрированному по времени энергетическому воздействию, что с большой вероятностью может привести к онкологии.

Читайте также:  Гдз по физике как измерить свою ногу

Другие единицы измерения радиации

  • Активность радиоактивного источника — ожидаемое число элементарных радиоактивных распадов в единицу времени. Измеряется:
  • Беккерель (Бк) — единица в системе СИ.
    1 Бк = 1 распад/с
  • Кюри (Ки) — внесистемная единица.
    1 Ки = 3,7*10 10 Бк

Перевод величин радиоактивного распада

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.

Видео: Единицы измерения и дозы радиации

Термины и определения

Радиация или ионизирующее излучение — это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации. Излучение радиации происходит при распаде атомов вещества или при их синтезе.

Радиоактивный распад — это самопроизвольное изменение состава или внутреннего строения нестабильных атомных ядер путем испускания микрочастиц атомов или элементов, составляющих эти частицы (фотон).

Постоянная распада — статистическая вероятность распада атома за единицу времени.

Период полураспада — промежуток времени, в течении которого распадается половина данного количества радионуклида.

Эффективная эквивалентная доза — эквивалентная доза, умноженная на коэффициент, учитывающая разную чувствительность различных тканей живого организма к радиации.

Мощность дозы — это изменение дозы за единицу времени.

Источник

«Взвешиваем» радиацию: о единицах измерения ионизирующего излучения

Если вы когда-нибудь искали в Гугле ответ на вопрос типа «безопасный уровень радиации», то вы наверняка сталкивались со множеством странных и непонятных терминов: кюри, рентгены, беккерели, зиверты, рады, греи и тому подобное. Попробуем разобраться в том, что они значат и как правильно трактовать те или иные цифры.

Как мы уже говорили, радиация, или более научно, ионизирующее излучение как правило возникает в результате тех или иных ядерных реакций, чаще всего – распадов нестабильных атомных ядер. Соответственно, наиболее естественной единицей измерения радиоактивности является число распадов, которые происходят в определённом образце радиоактивного вещества в единицу времени.

Исторически первой единицей измерения активности является кюри (Ки). В образце с активностью 1 кюри в секунду происходит столько же распадов, сколько и в кусочке чистого радия весом в 1 грамм, то есть 370 миллиардов актов распада. В реальности с такой единицей работать не очень удобно, и поэтому позже, в 1975 году придумали другую единицу измерения активности: беккерель. Один беккерель (Бк) – это активность образца, в котором происходит ровно 1 распад в секунду. Соответственно, 1 Ки = 37000000000 Бк.

Кюри и беккерели характеризуют радиоактивные свойства конкретного образца радиоактивного вещества с присущей ему массой и химическим составом. Поэтому часто используют производные величины: скажем, активность изотопов обычно измеряют в беккерелях (кюри) на грамм (килограмм), загрязнённость радиацией воздуха или жидкости – в беккерелях на литр (кубометр), для определения загрязнённости площади используют беккерель на метр (километр) квадратный. Например, средняя радиоактивность чистого атмосферного воздуха составляет около 10 беккерелей на кубометр. То есть, в каждом кубометре воздухе ежесекундно происходит 10 распадов (в основном обусловленных наличием в нём некоторого количества радиоактивного газа радона)

Довольно популярной в литературе «единицей измерения» является так называемый банановый эквивалент: активность обычного банана, вызванная наличием в нём радиоактивного изотопа калий-40. Оказывается, что банан весом в 150 грамм содержит около 19 беккерелей активности.

Для сравнения, активность природного урана составляет около 37 000 беккерелей на грамм (или, соответственно, 37 миллионов беккерелей на килограмм). И это ещё немного: так, активность 1 грамма плутония-239 составляет 2,3 миллиарда беккерелей на грамм.

Однако если вы читали предыдущую статью, то вам должно быть понятно, что одними только беккерелями и кюри ограничиться не получится. Как мы там говорили, различные ядерные реакции порождают разные продукты, обладающие различной энергией. К примеру, распад вышеупомянутого калия-40 приводит к образованию бета-частиц с энергией порядка 1,5·10-19 джоуля. А вот в результате распада атома плутния-239 рождаются альфа-частицы с энергией 8·10-16 джоуля – в 5 000 раз больше. Так что распад распаду – рознь, и беккерель беккерелю – тоже.

Собственно, предыдущий абзац как бы сам наводит нас на мысль, что важно не только количество распадов в единицу времени, но и «энергоёмкость» каждого из таких распадов. И даже не энергоёмкость самих распадов, а то, какую энергию получившиеся частицы передают веществу, которое подвергается облучению – то есть, какую дозу получило подвергнутое ему вещество.

Сначала физики рассуждали таким образом. Мы же говорим об ионизирующем излучении? Ну, так давайте померяем, насколько хорошо оно ионизирует! Так придумали единицу под названием рентген – пожалуй, самую распиаренную «единицу измерения радиации» на постсоветском пространстве. Суть такова: 1 рентген – это такое радиоактивное излучение, которое воздействует на 1 кубический сантиметр сухого воздуха при 0 градусов Цельсия так, что в нём образуются заряженные частицы с общим зарядом 3,33564 на 10 в минус 10 степени кулона. Почему столько? А потому, что 3,33564 на 10 в минус 10 степени кулона – это 1 франклин, единица измерения заряда в популярной (ибо удобно) в некоторых областях физики системе единиц СГС. Аналог рентгена в привычной нам системе СИ – кулон на килограмм, равный примерно 3876 рентгенам.

Соответственно, для измерения мощности излучения использовали производную единицу – рентген в час.

Однако на практике рентген оказался не очень удобен по ряду причин, и решили пойти другим путём: ввели единицу под названием грей. 1 грей характеризует такое облучение, в результате которого вещество получает 1 джоуль энергии на каждый килограмм массы. В настоящее время именно грей, а не рентген, являются общепринятой единицей измерения воздействия излучения. Однако зачастую в литературе, в том числе справочной, можно столкнуться именно с величинами, выраженными в рентгенах. В этом случае следует помнить, что 1 грей для воздуха соответствует примерно 0,009 рентгена. Обычно на практике переводят рентгены в греи, просто деля их на 100: 100 рентген – 1 грей, 0,01 грея – 1 рентген.

Но и это ещё не всё. Для физиков посчитать количество переданной «мишени» энергии в принципе достаточно для того, чтобы считать поле измеренным. А вот у медиков и биологов, изучающих воздействие радиации на живые организмы, задача немного иная: им важно определить, какой вред получит организм, поймав ту или иную дозу радиации. И тут возникает проблема, о которой мы тоже говорили: разные виды излучения (альфа, бета, гамма, нейтроны и т.п.) вредят организму по-разному. Для того, чтобы это дело описать, вводят понятие относительной биологической эффективности излучения, причём под эффективностью здесь понимают способность данного вида облучения наносить вред живой ткани (разрушать клетки и т.п.). Например, поток альфа-частиц наносит организму примерно в 20 раз больший ущерб, чем поток гамма-квантов, передавший этому организму ту же энергию. Поэтому на стыке физики и биологии появляется понятие эквивалентной дозы облучения, измеряемой в зивертах. Это, грубо говоря, те же греи, но умноженные на специальный коэффициент («коэффициент качества»), экспериментально определённый для каждого вида излучения; за эталон (1) принято разрушительное воздействие фотонов (рентгеновских и гамма-квантов).

Для бета-частиц коэффициент качества оказывается также равен 1, для альфа-частиц – 20, для протонов – 2, для нейтронов – от 5 до 20 в зависимости от их энергии (скорости). Проще говоря, если биологический объект получил 0,1 грея гамма-излучения, 0,1 грея облучения альфа-частицами и 0,1 грея облучения медленными нейтронами, то поглощённая доза излучения составит 0,3 грея, а эквивалентная доза – 2,6 зиверта.

На практике, впрочем, в большинстве случаев поглощённую дозу облучения в греях и эквивалентную дозу в зивертах можно считать равной. Это связано с тем, что с нейтронными потоками у обывателя столкнуться шансов почти нет, а альфа-излучение и протоны из-за своей малой проникающей способности не пробиваются даже через внешний мёртвый слой кожи. Поэтому в расчёт при внешнем облучении идут преимущественно потоки бета и гамма-частиц, а для них, как мы говорили выше, коэффициент качества равен 1. В таком случае можно говорить, что 1 зиверт и 1 грей численно равны, но надо помнить, что так бывает не всегда.

Существует, впрочем, ещё один нюанс. Дело в том, что разные ткани по-разному реагируют на одну и ту же дозу облучения: наиболее уязвимы половые органы, тонкий кишечник и органы кроветворения; куда более устойчивы – головной мозг, кости и так далее. Так что в медицине вводят понятие эффективной дозы облучения, которая учитывает разницу в восприятии облучения разными типами тканей. Но это уже больше биология, чем физика, да и измеряется эффективная доза тоже в зивертах, так что в это мы углубляться не будем.

Давайте повторим для ясности: активность источника радиоактивного излучения измеряется в кюри или (чаще) беккерелях. В греях, реже – рентгенах измеряют физическое воздействие излучения, исходящего от этого источника на некую мишень, а в зивертах – аналогичное биологическое воздействие.

Конечно, между активностью источника и влиянием его излучения есть определённая связь, но простой «формулы перевода» беккерелей в зиверты нет и быть не может. Например, источник из цезия-137 с активностью излучения в 1 кюри на расстоянии метра от себя создаст излучение мощностью примерно в 0,004 грея/час. Для других изотопов эта цифра будет иной, но если очень надо прямо сейчас прикинуть на пальцах, то порядок чисел будет примерно таким.

При этом по мере удаления от источника мощность излучения будет убывать по формуле обратных квадратов: уже в 10 метрах она будет в 100 раз меньше.

Под фразой «радиационный фон составляет столько-то» следует понимать измеренную совокупную дозу излучения от всех источников, которую вы можете получить в данном месте за определённое время пребывания.

В литературе можно встретить и другие единицы измерения. Например, резефорд – устаревшая единица измерения активности источника, равная 1 миллиону беккерелей. Рад – «младший брат» грея, равный одной сотой от него. В советской литературе также встречается единица измерения «бэр», расшифровывается «биологический эквивалент рентгена» и соотносится с ним так же, как зиверт с греем. Как привести её к общему знаменателю с зивертом можно всё тем же способом: поделить примерно на 100.

В следующем материале мы поговорим о нормальных, повышенных, опасных и безопасных дозах радиации, о том, где вы с ними можете столкнуться и чего в этом смысле стоит бояться, а чего – не очень.

Источник

Виды радиоактивных излучений

Навигация по статье:

Радиация и виды радиоактивных излучений, состав радиоактивного (ионизирующего) излучения и его основные характеристики. Действие радиации на вещество.

Что такое радиация

Для начала дадим определение, что такое радиация:

В процессе распада вещества или его синтеза происходит выброс элементов атома (протонов, нейтронов, электронов, фотонов), иначе можно сказать происходит излучение этих элементов. Подобное излучение называют — ионизирующее излучение или что чаще встречается радиоактивное излучение, или еще проще радиация. К ионизирующим излучениям относится так же рентгеновское и гамма излучение.

Читайте также:  Все методы измерения расхода жидкости или газа

Радиация — это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации.

Ионизация — это процесс образования положительно или отрицательно заряженных ионов или свободных электронов из нейтрально заряженных атомов или молекул.

Радиоактивное (ионизирующее) излучение можно разделить на несколько типов, в зависимости от вида элементов из которого оно состоит. Разные виды излучения вызваны различными микрочастицами и поэтому обладают разным энергетическим воздействие на вещество, разной способностью проникать сквозь него и как следствие различным биологическим действием радиации.

Альфа, бета и нейтронное излучение — это излучения, состоящие из различных частиц атомов.

Гамма и рентгеновское излучение — это излучение энергии.

Альфа излучение

  • излучаются: два протона и два нейтрона
  • проникающая способность: низкая
  • облучение от источника: до 10 см
  • скорость излучения: 20 000 км/с
  • ионизация: 30 000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Альфа (α) излучение возникает при распаде нестабильных изотопов элементов.

Альфа излучение — это излучение тяжелых, положительно заряженных альфа частиц, которыми являются ядра атомов гелия (два нейтрона и два протона). Альфа частицы излучаются при распаде более сложных ядер, например, при распаде атомов урана, радия, тория.

Альфа частицы обладают большой массой и излучаются с относительно невысокой скоростью в среднем 20 тыс. км/с, что примерно в 15 раз меньше скорости света. Поскольку альфа частицы очень тяжелые, то при контакте с веществом, частицы сталкиваются с молекулами этого вещества, начинают с ними взаимодействовать, теряя свою энергию и поэтому проникающая способность данных частиц не велика и их способен задержать даже простой лист бумаги.

Однако альфа частицы несут в себе большую энергию и при взаимодействии с веществом вызывают его значительную ионизацию. А в клетках живого организма, помимо ионизации, альфа излучение разрушает ткани, приводя к различным повреждениям живых клеток.

Из всех видов радиационного излучения, альфа излучение обладает наименьшей проникающей способностью, но последствия облучения живых тканей данным видом радиации наиболее тяжелые и значительные по сравнению с другими видами излучения.

Облучение радиацией в виде альфа излучения может произойти при попадании радиоактивных элементов внутрь организма, например, с воздухом, водой или пищей, а также через порезы или ранения. Попадая в организм, данные радиоактивные элементы разносятся током крови по организму, накапливаются в тканях и органах, оказывая на них мощное энергетическое воздействие. Поскольку некоторые виды радиоактивных изотопов, излучающих альфа радиацию, имеют продолжительный срок жизни, то попадая внутрь организма, они способны вызвать в клетках серьезные изменения и привести к перерождению тканей и мутациям.

Радиоактивные изотопы фактически не выводятся с организма самостоятельно, поэтому попадая внутрь организма, они будут облучать ткани изнутри на протяжении многих лет, пока не приведут к серьезным изменениям. Организм человека не способен нейтрализовать, переработать, усвоить или утилизировать, большинство радиоактивных изотопов, попавших внутрь организма.

Нейтронное излучение

  • излучаются: нейтроны
  • проникающая способность: высокая
  • облучение от источника: километры
  • скорость излучения: 40 000 км/с
  • ионизация: от 3000 до 5000 пар ионов на 1 см пробега
  • биологическое действие радиации: высокое

Нейтронное излучение — это техногенное излучение, возникающие в различных ядерных реакторах и при атомных взрывах. Также нейтронная радиация излучается звездами, в которых идут активные термоядерные реакции.

Не обладая зарядом, нейтронное излучение сталкиваясь с веществом, слабо взаимодействует с элементами атомов на атомном уровне, поэтому обладает высокой проникающей способностью. Остановить нейтронное излучение можно с помощью материалов с высоким содержанием водорода, например, емкостью с водой. Так же нейтронное излучение плохо проникает через полиэтилен.

Нейтронное излучение при прохождении через биологические ткани, причиняет клеткам серьезный ущерб, так как обладает значительной массой и более высокой скоростью чем альфа излучение.

Бета излучение

  • излучаются: электроны или позитроны
  • проникающая способность: средняя
  • облучение от источника: до 20 м
  • скорость излучения: 300 000 км/с
  • ионизация: от 40 до 150 пар ионов на 1 см пробега
  • биологическое действие радиации: среднее

Бета (β) излучение возникает при превращении одного элемента в другой, при этом процессы происходят в самом ядре атома вещества с изменением свойств протонов и нейтронов.

При бета излучении, происходит превращение нейтрона в протон или протона в нейтрон, при этом превращении происходит излучение электрона или позитрона (античастица электрона), в зависимости от вида превращения. Скорость излучаемых элементов приближается к скорости света и примерно равна 300 000 км/с. Излучаемые при этом элементы называются бета частицы.

Имея изначально высокую скорость излучения и малые размеры излучаемых элементов, бета излучение обладает более высокой проникающей способностью чем альфа излучение, но обладает в сотни раз меньшей способность ионизировать вещество по сравнению с альфа излучением.

Бета радиация с легкостью проникает сквозь одежду и частично сквозь живые ткани, но при прохождении через более плотные структуры вещества, например, через металл, начинает с ним более интенсивно взаимодействовать и теряет большую часть своей энергии передавая ее элементам вещества. Металлический лист в несколько миллиметров может полностью остановить бета излучение.

Если альфа радиация представляет опасность только при непосредственном контакте с радиоактивным изотопом, то бета излучение в зависимости от его интенсивности, уже может нанести существенный вред живому организму на расстоянии несколько десятков метров от источника радиации.

Если радиоактивный изотоп, излучающий бета излучение попадает внутрь живого организма, он накапливается в тканях и органах, оказывая на них энергетическое воздействие, приводя к изменениям в структуре тканей и со временем вызывая существенные повреждения.

Некоторые радиоактивные изотопы с бета излучением имеют длительный период распада, то есть попадая в организм, они будут облучать его годами, пока не приведут к перерождению тканей и как следствие к раку.

Гамма излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность: высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Гамма (γ) излучение — это энергетическое электромагнитное излучение в виде фотонов.

Гамма радиация сопровождает процесс распада атомов вещества и проявляется в виде излучаемой электромагнитной энергии в виде фотонов, высвобождающихся при изменении энергетического состояния ядра атома. Гамма лучи излучаются ядром со скоростью света.

Когда происходит радиоактивный распад атома, то из одних веществ образовываются другие. Атом вновь образованных веществ находятся в энергетически нестабильном (возбужденном) состоянии. Воздействую друг на друга, нейтроны и протоны в ядре приходят к состоянию, когда силы взаимодействия уравновешиваются, а излишки энергии выбрасываются атомом в виде гамма излучения

Гамма излучение обладает высокой проникающей способностью и с легкостью проникает сквозь одежду, живые ткани, немного сложнее через плотные структуры вещества типа металла. Чтобы остановить гамма излучение потребуется значительная толщина стали или бетона. Но при этом гамма излучение в сто раз слабее оказывает действие на вещество чем бета излучение и десятки тысяч раз слабее чем альфа излучение.

Основная опасность гамма излучения — это его способность преодолевать значительные расстояния и оказывать воздействие на живые организмы за несколько сотен метров от источника гамма излучения.

Рентгеновское излучение

  • излучаются: энергия в виде фотонов
  • проникающая способность:высокая
  • облучение от источника: до сотен метров
  • скорость излучения: 300 000 км/с
  • ионизация: от 3 до 5 пар ионов на 1 см пробега
  • биологическое действие радиации: низкое

Рентгеновское излучение — это энергетическое электромагнитное излучение в виде фотонов, возникающие при переходе электрона внутри атома с одной орбиты на другую.

Рентгеновское излучение сходно по действию с гамма излучением, но обладает меньшей проникающей способностью, потому что имеет большую длину волны.

Рассмотрев различные виды радиоактивного излучения, видно, что понятие радиация включает в себя совершенно различные виды излучения, которые оказывают разное воздействие на вещество и живые ткани, от прямой бомбардировки элементарными частицами (альфа, бета и нейтронное излучение) до энергетического воздействия в виде гамма и рентгеновского излечения.

Каждое из рассмотренных излучений опасно!

Сравнительная таблица с характеристиками различных видов радиации

характеристика Вид радиации
Альфа излучение Нейтронное излучение Бета излучение Гамма излучение Рентгеновское излучение
излучаются два протона и два нейтрона нейтроны электроны или позитроны энергия в виде фотонов энергия в виде фотонов
проникающая способность низкая высокая средняя высокая высокая
облучение от источника до 10 см километры до 20 м сотни метров сотни метров
скорость излучения 20 000 км/с 40 000 км/с 300 000 км/с 300 000 км/с 300 000 км/с
ионизация, пар на 1 см пробега 30 000 от 3000 до 5000 от 40 до 150 от 3 до 5 от 3 до 5
биологическое действие радиации высокое высокое среднее низкое низкое

Как видно из таблицы, в зависимости от вида радиации, излучение при одной и той же интенсивности, например в 0.1 Рентген, будет оказать разное разрушающее действие на клетки живого организма. Для учета этого различия, был введен коэффициент k, отражающий степень воздействия радиоактивного излучения на живые объекты.

Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.

Видео: Виды радиации

Источник

Единицы измерения радиоактивного излучения

Многие сталкиваются с трудностями при определении единиц измерения радиоактивного излучения и практическом использовании полученных значений. Сложности возникают не только из-за их большого разнообразия: беккерели, кюри, зиверты, рентгены, рады, кулоны, ремы и др., но и из-за того, что не все используемые величины связаны между собой кратными соотношениями и при необходимости могут переводиться из одних в другие.

Как разобраться?

Все довольно просто, если отдельно рассматривать единицы, связанные с радиоактивностью, как физическим явлением, и величины, измеряющие воздействие этого явления (ионизирующего излучения) на живые организмы и окружающую среду. А также, если не забывать о внесистемных единицах и единицах радиоактивности, действующих в системе СИ (Международная система единиц), которая была введена в 1982 году и обязательна к использованию во всех учреждениях и предприятиях.

Внесистемная (старая) единица измерения радиоактивности

Кюри (Ки) – первая единица радиоактивности, измеряющая активность 1 грамма чистого радия. Введенная с 1910 года и названная в честь французских ученых К. и М. Кюри, она не связана с какой-либо системой измерения и в последнее время утратила свое практическое значение. В России же кюри, несмотря на действующую систему СИ, разрешенная к использованию в области ядерной физики и медицины без срока ограничения.

Единицы радиоактивности в системе СИ

В СИ используется другая величина – беккерель (Бк), которая определяет распад одного ядра в секунду. Беккерель более удобен в расчетах, чем кюри, поскольку имеет не такие большие значения и позволяет без сложных математических действий по радиоактивности радионуклида определить его количество. Высчитав количество распадов 1 г радона, легко установить соотношение между Ки и Бк: 1 Ки = 3,7*1010 Бк, а также определить активность любого другого радиоактивного элемента.

Измерение ионизирующих излучений

С открытием радия было обнаружено, что излучение радиоактивных веществ влияет на живые организмы и вызывает биологические эффекты, сходные с действием рентгеновского облучения. Появилось такое понятие, как доза ионизирующего излучения – величина, которая позволяет оценивать воздействие радиационного облучения на организмы и вещества. В зависимости от особенностей облучения, выделяют эквивалентную, поглощенную и экспозиционную дозы:

  1. Экспозиционная доза – показатель ионизации воздуха, возникающей под действием гамма- и рентгеновских лучей, определяется количеством образовавшихся ионов радионуклидов в 1 куб. см. воздуха при нормальных условиях. В системе СИ она измеряется в кулонах (Кл), но существует и внесистемная единица – рентген (Р). Один рентген – большая величина, поэтому удобнее на практике использовать ее миллионную (мкР) или тысячную (мР) доли. Между единицами экспозиционной дозы установлено следующее соотношения: 1 Р = 2, 58.10-4 Кл/кг.
  2. Поглощенная доза – энергия альфа-, бета- и гамма-излучения, поглощенная и накопленная единицей массы вещества. В международной системе СИ для нее введена следующая единица измерения – грей (Гр), хотя до сих пор в отдельных областях, например в радиационной гигиене и в радиобиологии широко используется внесистемная единица – рад (Р). Между этими величинами имеется такое соответствие: 1 Рад = 10-2 Гр.
  3. Эквивалентная доза – поглощенная доза ионизирующего излучения, учитывающая степень его воздействия на живую ткань. Поскольку одинаковые дозы альфа-, бета- или гамма-излучения оказывают разный биологический ущерб, введен так называемый КК –коэффициент качества. Для получения эквивалентной дозы необходимо поглощенную дозу, полученную от определенного вида излучения, умножить на этот коэффициент. Измеряется эквивалентная доза в берах (Бэр) и зивертах (Зв), обе эти единицы взаимозаменяемы, переводятся из одной в другую таким образом: 1 Зв = 100 Бэр (Рем).
Читайте также:  Какие методы измерения температуры называют контактными

В системе СИ используется зиверт – эквивалентная доза конкретного ионизирующего излучения, поглощенная одним килограммом биологической ткани. Для пересчета греев в зиверты следует учесть коэффициент относительной биологической активности (ОБЭ), который равен:

  • для альфа-частиц – 10-20;
  • для гамма- и бета-излучения – 1;
  • для протонов – 5-10;
  • для нейтронов со скоростью до 10 кэВ – 3-5;
  • для нейтронов со скоростью больше 10 кэВ: 10-20;
  • для тяжелых ядер – 20.

Бэр (биологический эквивалент рентгена) или рем (в английском языке rem – Roentgen Equivalent of Man) – внесистемная единица эквивалентной дозы. Поскольку альфа-излучение наносит больший ущерб, то для получения результата в ремах, необходимо измеренную радиоактивность в радах умножить на коэффициент, равный двадцати. При определении гамма- или бета-излучения перевод величин не требуется, поскольку ремы и рады равны друг другу.

Источник

«Взвешиваем» радиацию: о единицах измерения ионизирующего излучения

Если вы когда-нибудь искали в Гугле ответ на вопрос типа «безопасный уровень радиации», то вы наверняка сталкивались со множеством странных и непонятных терминов: кюри, рентгены, беккерели, зиверты, рады, греи и тому подобное. Попробуем разобраться в том, что они значат и как правильно трактовать те или иные цифры.

Как мы уже говорили, радиация, или более научно, ионизирующее излучение как правило возникает в результате тех или иных ядерных реакций, чаще всего – распадов нестабильных атомных ядер. Соответственно, наиболее естественной единицей измерения радиоактивности является число распадов, которые происходят в определённом образце радиоактивного вещества в единицу времени.

Исторически первой единицей измерения активности является кюри (Ки). В образце с активностью 1 кюри в секунду происходит столько же распадов, сколько и в кусочке чистого радия весом в 1 грамм, то есть 370 миллиардов актов распада. В реальности с такой единицей работать не очень удобно, и поэтому позже, в 1975 году придумали другую единицу измерения активности: беккерель. Один беккерель (Бк) – это активность образца, в котором происходит ровно 1 распад в секунду. Соответственно, 1 Ки = 37000000000 Бк.

Кюри и беккерели характеризуют радиоактивные свойства конкретного образца радиоактивного вещества с присущей ему массой и химическим составом. Поэтому часто используют производные величины: скажем, активность изотопов обычно измеряют в беккерелях (кюри) на грамм (килограмм), загрязнённость радиацией воздуха или жидкости – в беккерелях на литр (кубометр), для определения загрязнённости площади используют беккерель на метр (километр) квадратный. Например, средняя радиоактивность чистого атмосферного воздуха составляет около 10 беккерелей на кубометр. То есть, в каждом кубометре воздухе ежесекундно происходит 10 распадов (в основном обусловленных наличием в нём некоторого количества радиоактивного газа радона)

Довольно популярной в литературе «единицей измерения» является так называемый банановый эквивалент: активность обычного банана, вызванная наличием в нём радиоактивного изотопа калий-40. Оказывается, что банан весом в 150 грамм содержит около 19 беккерелей активности.

Для сравнения, активность природного урана составляет около 37 000 беккерелей на грамм (или, соответственно, 37 миллионов беккерелей на килограмм). И это ещё немного: так, активность 1 грамма плутония-239 составляет 2,3 миллиарда беккерелей на грамм.

Однако если вы читали предыдущую статью, то вам должно быть понятно, что одними только беккерелями и кюри ограничиться не получится. Как мы там говорили, различные ядерные реакции порождают разные продукты, обладающие различной энергией. К примеру, распад вышеупомянутого калия-40 приводит к образованию бета-частиц с энергией порядка 1,5·10-19 джоуля. А вот в результате распада атома плутния-239 рождаются альфа-частицы с энергией 8·10-16 джоуля – в 5 000 раз больше. Так что распад распаду – рознь, и беккерель беккерелю – тоже.

Собственно, предыдущий абзац как бы сам наводит нас на мысль, что важно не только количество распадов в единицу времени, но и «энергоёмкость» каждого из таких распадов. И даже не энергоёмкость самих распадов, а то, какую энергию получившиеся частицы передают веществу, которое подвергается облучению – то есть, какую дозу получило подвергнутое ему вещество.

Сначала физики рассуждали таким образом. Мы же говорим об ионизирующем излучении? Ну, так давайте померяем, насколько хорошо оно ионизирует! Так придумали единицу под названием рентген – пожалуй, самую распиаренную «единицу измерения радиации» на постсоветском пространстве. Суть такова: 1 рентген – это такое радиоактивное излучение, которое воздействует на 1 кубический сантиметр сухого воздуха при 0 градусов Цельсия так, что в нём образуются заряженные частицы с общим зарядом 3,33564 на 10 в минус 10 степени кулона. Почему столько? А потому, что 3,33564 на 10 в минус 10 степени кулона – это 1 франклин, единица измерения заряда в популярной (ибо удобно) в некоторых областях физики системе единиц СГС. Аналог рентгена в привычной нам системе СИ – кулон на килограмм, равный примерно 3876 рентгенам.

Соответственно, для измерения мощности излучения использовали производную единицу – рентген в час.

Однако на практике рентген оказался не очень удобен по ряду причин, и решили пойти другим путём: ввели единицу под названием грей. 1 грей характеризует такое облучение, в результате которого вещество получает 1 джоуль энергии на каждый килограмм массы. В настоящее время именно грей, а не рентген, являются общепринятой единицей измерения воздействия излучения. Однако зачастую в литературе, в том числе справочной, можно столкнуться именно с величинами, выраженными в рентгенах. В этом случае следует помнить, что 1 грей для воздуха соответствует примерно 0,009 рентгена. Обычно на практике переводят рентгены в греи, просто деля их на 100: 100 рентген – 1 грей, 0,01 грея – 1 рентген.

Но и это ещё не всё. Для физиков посчитать количество переданной «мишени» энергии в принципе достаточно для того, чтобы считать поле измеренным. А вот у медиков и биологов, изучающих воздействие радиации на живые организмы, задача немного иная: им важно определить, какой вред получит организм, поймав ту или иную дозу радиации. И тут возникает проблема, о которой мы тоже говорили: разные виды излучения (альфа, бета, гамма, нейтроны и т.п.) вредят организму по-разному. Для того, чтобы это дело описать, вводят понятие относительной биологической эффективности излучения, причём под эффективностью здесь понимают способность данного вида облучения наносить вред живой ткани (разрушать клетки и т.п.). Например, поток альфа-частиц наносит организму примерно в 20 раз больший ущерб, чем поток гамма-квантов, передавший этому организму ту же энергию. Поэтому на стыке физики и биологии появляется понятие эквивалентной дозы облучения, измеряемой в зивертах. Это, грубо говоря, те же греи, но умноженные на специальный коэффициент («коэффициент качества»), экспериментально определённый для каждого вида излучения; за эталон (1) принято разрушительное воздействие фотонов (рентгеновских и гамма-квантов).

Для бета-частиц коэффициент качества оказывается также равен 1, для альфа-частиц – 20, для протонов – 2, для нейтронов – от 5 до 20 в зависимости от их энергии (скорости). Проще говоря, если биологический объект получил 0,1 грея гамма-излучения, 0,1 грея облучения альфа-частицами и 0,1 грея облучения медленными нейтронами, то поглощённая доза излучения составит 0,3 грея, а эквивалентная доза – 2,6 зиверта.

На практике, впрочем, в большинстве случаев поглощённую дозу облучения в греях и эквивалентную дозу в зивертах можно считать равной. Это связано с тем, что с нейтронными потоками у обывателя столкнуться шансов почти нет, а альфа-излучение и протоны из-за своей малой проникающей способности не пробиваются даже через внешний мёртвый слой кожи. Поэтому в расчёт при внешнем облучении идут преимущественно потоки бета и гамма-частиц, а для них, как мы говорили выше, коэффициент качества равен 1. В таком случае можно говорить, что 1 зиверт и 1 грей численно равны, но надо помнить, что так бывает не всегда.

Существует, впрочем, ещё один нюанс. Дело в том, что разные ткани по-разному реагируют на одну и ту же дозу облучения: наиболее уязвимы половые органы, тонкий кишечник и органы кроветворения; куда более устойчивы – головной мозг, кости и так далее. Так что в медицине вводят понятие эффективной дозы облучения, которая учитывает разницу в восприятии облучения разными типами тканей. Но это уже больше биология, чем физика, да и измеряется эффективная доза тоже в зивертах, так что в это мы углубляться не будем.

Давайте повторим для ясности: активность источника радиоактивного излучения измеряется в кюри или (чаще) беккерелях. В греях, реже – рентгенах измеряют физическое воздействие излучения, исходящего от этого источника на некую мишень, а в зивертах – аналогичное биологическое воздействие.

Конечно, между активностью источника и влиянием его излучения есть определённая связь, но простой «формулы перевода» беккерелей в зиверты нет и быть не может. Например, источник из цезия-137 с активностью излучения в 1 кюри на расстоянии метра от себя создаст излучение мощностью примерно в 0,004 грея/час. Для других изотопов эта цифра будет иной, но если очень надо прямо сейчас прикинуть на пальцах, то порядок чисел будет примерно таким.

При этом по мере удаления от источника мощность излучения будет убывать по формуле обратных квадратов: уже в 10 метрах она будет в 100 раз меньше.

Под фразой «радиационный фон составляет столько-то» следует понимать измеренную совокупную дозу излучения от всех источников, которую вы можете получить в данном месте за определённое время пребывания.

В литературе можно встретить и другие единицы измерения. Например, резефорд – устаревшая единица измерения активности источника, равная 1 миллиону беккерелей. Рад – «младший брат» грея, равный одной сотой от него. В советской литературе также встречается единица измерения «бэр», расшифровывается «биологический эквивалент рентгена» и соотносится с ним так же, как зиверт с греем. Как привести её к общему знаменателю с зивертом можно всё тем же способом: поделить примерно на 100.

В следующем материале мы поговорим о нормальных, повышенных, опасных и безопасных дозах радиации, о том, где вы с ними можете столкнуться и чего в этом смысле стоит бояться, а чего – не очень.

Источник