Меню

Единицы измерения магнитного потока индукционный



Магнитная индукция. Определение и описание явления.

Магнитная индукция (обозначается символом В) – главная характеристика магнитного поля (векторная величина ), которая определяет силу воздействия на перемещающийся электрический заряд (ток) в магнитном поле, направленной в перпендикулярном направлении скорости движения.

Магнитная индукция определяется способностью влиять на объект с помощью магнитного поля. Эта способность проявляется при перемещении постоянного магнита в катушке, в результате чего в катушке индуцируется (возникает) ток, при этом магнитный поток в катушке также увеличивается.

Физический смысл магнитной индукции

Физически это явление объясняется следующим образом. Металл имеет кристаллическую структуру (катушка состоит из металла). В кристаллической решетке металла расположены электрические заряды — электроны. Если на металл не оказывать ни какое магнитное воздействие, то заряды (электроны) находятся в покое и никуда не движутся.

В результате чего в металле возникает электрический ток. Сила этого тока зависит от физических свойств магнита и катушки и скорости перемещения одного относительно другого.

При помещении металлической катушки в магнитное поле заряженные частицы металлический решетки (в кашутке) поворачиваются на определенный угол и размещаются вдоль силовых линий магнитного поля.

Чем выше сила магнитного поля, тем больше количество частиц поворачиваются и тем более однородным будет являться их расположение.

Магнитные поля, ориентированные в одном направлении не нейтрализуют друг друга, а складываются, формируя единое поле.

Формула магнитной индукции

где, В — вектор магнитной индукции, F — максимальная сила действующая на проводник с током, I — сила тока в проводнике, l — длина проводника.

Магнитный поток

Магнитный поток это скалярная величина, которая характеризует действие магнитной индукции на некий металлический контур.

Магнитная индукция определяется числом силовых линий, проходящих через 1 см2 сечения металла.

Магнитометры, используемые для ее измерения, называют теслометрами.

Источник

Поток вектора магнитной индукции

Магнитный поток Φ через площадку S (поток вектора магнитной индукции) – это скалярная величина:

Φ = B S cos α = B n S = B → S → с углом между n → и B → , обозначаемым α , n → является нормалью к площадке S .

Формула магнитного потока

Φ равняется количеству линий магнитной индукции, пересекающих площадку S , как показано на рисунке 1 . Поток магнитной индукции по формуле принимает положительные и отрицательные значения. Его знак зависит от выбора положительного направления нормали к площадке S . Зачастую положительное направление нормали связано с направлением обхода контура током. За такое направление берут поступательное перемещение правого винта во время его вращения по току.

В чем измеряется магнитный поток

В случае неоднородности магнитного поля S не будет плоской, а плоскость может быть разбита на элементарные площадки d S , рассматриваемые в качестве плоских, поле которых также считается однородным. Определение магнитного потока d Φ производится через эту поверхность. Запись примет вид:

d Φ = B d S cos α = B → d S → .

Нахождение полного потока через поверхность S :

Φ = ∫ S B d S cos α = ∫ S B → d S → .

Основной единицей измерения магнитного потока в системе СИ считаются веберы ( В б ) . 1 В б = 1 Т л 1 м 2 .

Связь магнитного потока и работы сил магнитного поля

Элементарная работа δ A , совершаемая силами магнитного поля, выражается через элементарное изменение потока вектора магнитной индукции d Φ :

Если проводник с током совершает конечное перемещение, сила тока постоянна, то работа сил поля равняется:

A = I Φ 2 — Φ 1 с Φ 1 , обозначаемым потоком через контур в начале перемещения, Φ 2 является потоком через контур в конце перемещения.

Теорема Гаусса для магнитного поля

Значение суммарного магнитного потока через замкнутую поверхность S равняется нулю:

Выражение ∮ B → d S → = 0 является справедливым для любых магнитных полей. Данное уравнение считается аналогом теоремы Остроградского-Гаусса в электростатике в вакууме:

Запись ∮ B → d S → = 0 говорит о том, что источник магнитного поля – это не магнитные заряды, а электрические токи.

Дан бесконечно длинный прямой проводник с током I , недалеко от которого имеется квадратная рамка. По ней проходит ток с силой I ‘ . Сторона рамки равна a . Она располагается в одной плоскости с проводом, как показано на рисунке 2 . Значение расстояния от ближайшей стороны рамки до проводника равняется b . Найти работу магнитной силы при удалении рамки из поля. Считать токи постоянными.

Индукция магнитного поля длинного проводника с током в части, где расположена квадратная рамка, направляется на нас.

Следует учитывать нахождение рамки с током в неоднородном поле, что означает убывание магнитной индукции при удалении от провода.

За основу возьмем формулу магнитного потока и работы, которая их связывает:

A = I ‘ Φ 2 — Φ 1 ( 1 . 1 ) , где I ‘ принимают за силу тока в рамке, Φ 1 – за поток через квадратную рамку при расстоянии от ее стороны к проводу равняющимся b . Φ 2 = 0 . Это объясняется тем, что конечное положение рамки вне магнитного поля, как дано по условию. Отсюда следует, запись формулы ( 1 . 1 ) изменится:

A = — I ‘ Φ 1 ( 1 . 2 ) .

Перейдем к нормали n → и выберем ее направление к квадратному контуру относительно нас, используя правило правого винта. Отсюда следует, что для всех элементов поверхности, ограниченной при помощи контура квадратной рамки, угол между нормалью n → и вектором B → равняется π . Запись формулы потока через поверхность рамки на расстоянии х от провода примет вид:

d Φ = — B d S = — B · a · d x = — μ 0 2 π I l d x x ( 1 . 3 ) , значение индукции магнитного поля бесконечно длинного проводника с током силы I будет:

B = μ 0 2 π x I l ( 1 . 4 ) .

Отсюда следует, что для нахождения всего потока из ( 1 . 3 ) потребуется:

Φ 1 = ∫ S — μ 0 2 π I l d x x = — μ 0 2 π I l ∫ b b + a d x x = — μ 0 2 π I l · ln b + a b ( 1 . 5 ) .

Произведем подстановку формулы ( 1 . 5 ) в ( 1 . 2 ) . Искомая работа равняется:

A = I ‘ μ 0 2 π I l · ln b + a b .

Ответ: A = μ 0 2 π I I ‘ l · ln b + a b .

Найти силу, действующую на рамку, из предыдущего примера.

Для нахождения искомой силы, действующей на квадратную рамку с током в поле длинного провода, предположим, что под воздействием магнитной силы рамка смещается на незначительное расстояние d x . Это говорит о совершении силой работы, равной:

δ A = F d x ( 2 . 1 ) .

Элементарная работа δ A может быть выражена как:

δ A = I ‘ d Φ ( 2 . 2 ) .

Произведем то же с силой, применяя формулы ( 2 . 1 ) , ( 2 . 2 ) . Получаем:

F d x = I ‘ d Φ → F = I ‘ d Φ d x ( 2 . 3 ) .

Используем выражение, которое было получено в примере 1 :

d Φ = — μ 0 2 π I l d x x → d Φ d x = — μ 0 2 π I l x ( 2 . 4 ) .

Произведем подстановку d Φ d x в ( 2 . 3 ) . Имеем:

F = I ‘ μ 0 2 π I l x ( 2 . 5 ) .

Каждый элемент контура квадратной рамки находится под воздействием сил (силы Ампера). Отсюда следует, что на рамку действует 4 силы, причем на стороны A B и D C равные по модулю и противоположные по направлению. Выражение принимает вид:

F A B → + F D C → = 0 ( 2 . 6 ) , то есть их сумма равняется нулю. Тогда значение результирующей силы, приложенной к контуру, запишется:

F → = F A D → + F B C → ( 2 . 6 ) .

Используя правило левой руки, получаем направление этих сил вдоль одной прямой в противоположные стороны:

F = F A D — F B C ( 2 . 7 ) .

Произведем поиск силы F A D , действующей на сторону A D , применив формулу ( 2 . 5 ) , где x = b :

F A D = I ‘ м 0 2 π I l b ( 2 . 8 ) .

Значение F B C будет:

F B C = I ‘ μ 0 2 π I l b + a ( 2 . 9 ) .

Для нахождения искомой силы:

F = I ‘ μ 0 2 π I l b — I ‘ μ 0 2 π I l b + a = I I ‘ μ 0 l 2 π 1 b — 1 b + a .

Ответ: F = I I ‘ μ 0 l 2 π 1 b — 1 b + a . Магнитные силы выталкивают рамку с током до тех пор, пока она находится в первоначальной ориентации относительно поля провода.

Источник

Магнитный поток — определение, формулы и расчеты индукции

Наблюдение за спектрами

В соответствии с плотностью линий магнитного поля (МП) можно увидеть величину вектора индукции, а согласно направленности силовых рядов — его течение. Наблюдение за спектрами постоянного тока и катушки на самом деле показывает, что при удалении проводника индукция МП уменьшается и довольно быстро.

Магнитный фон называется:

  1. С различным выведением в разных точках — гетерогенным. Неоднородный фон — это часть прямолинейного и радиального тока, вне соленоида, неизменённого магнита и т. д.
  2. С индукцией во всех точках — однородным полем. Графически такой МФ представлен силовыми линиями, которые считаются равноотстоящими параллельными частями. Этот случай является фоном изнутри длинного соленоида, а также полем между близкими соседними плоскими наконечниками электромагнита.

Произведение индукции поля, проникающего в контур от его области, называется потоком МИ или элементарным МП. Определение было дано и изучено британским физиком Фарадеем. Он отметил, что эта концепция на самом деле позволяет глубже рассмотреть совместный характер магнитных и электрических явлений.

Обозначая поток буквой f, площадью контура S и углом между направлением вектора индукции B и нормальной частью n к области α, можно написать магнитный поток формулой:

Читайте также:  Единицы измерения квадратные длины таблица

МП является скалярным размером. Например, поскольку плотность силовых рядов случайного магнитного поля равна его индукции, он уравнивается всему количеству линий, которые проникают в цепь. С изменением поля поток, который пронизывает контур, также меняется.

Единица измерения магнитного потока — вебер. Определение СИ струи считается линия, площадь которой 1 м², оказавшаяся на равномерном фоне с индукцией 1 Вт / м2 и перпендикулярная вектору. Это устройство будет обозначаться:

1 Вт = 1 Вт / м2 — 1 м².

Особенности течения

Скорость изменения магнитного потока генерирует электронный фон, имеющий замкнутые блоки питания (вихревое поле). Этот фон рассматривается в проводнике как циркуляция внешних сил. Это явление называется электрической индукцией, а мощность, которую можно определить, генерируемая в этом случае, является индуцированной ЭДС поверхности.

Поток подчёркивает вероятность характеристики всего магнита или видов других источников МП. Если индукция выдвигает на первый план вероятность, характерную её эффекту в любой отдельной точке, поток будет целым. Это вторая по значимости особенность поля. Если МИ функционирует как силовая часть МП, поток считается её энергетической линией.

Возвращаясь к экспериментам, можно сказать, что фактически любая электромагнитная катушка может рассматриваться как 1 закрытая. Это схема, по которой будет течь магнитный поток вектора индукции, тогда ток МИ электронов будет замечен при потокосцеплении.

Таким образом, непосредственно под действием струи в замкнутом проводнике образуется электронный фон. И в течение этого времени он будет генерировать ток.

Магнитная индукция

Согласно прогрессивным научным представлениям об электрических явлениях, МП неразрывно связан с током и не может присутствовать без него. Невозможно предположить электроток без МП. В том числе в случае неизменного магнита связывают этот фон с молекулярными линиями.

Если в место, где находится МП, поставить иглу, она стремится заимствовать определённое состояние, которое фактически показывает ориентационные качества МП. Скоординированное направление в этой точке места должно учитывать пункт назначения, где установлена ось, — это свободноподвешенная бесконечно небольшая магнитная стрелка, середина которой выровнена с точкой начального места. При этом из 2 возможных направлений вдоль оси стрелки МП символически присваивается назначение от южного конца на север.

Можно получить более яркое представление о направленности поля, если имеется ряд линий, где оси всех стрелок будут относительно касательными. Эти части называются магнитными магистралями.

Набор рядов упоминается как МП. Если бесконечно уменьшать площадь контура, притягивая его к точке, можно прийти к выражению для бесконечно малой стадии d, T активно в контуре маленькой области s, где угол P имеет конкретное значение между нормальностью к плоскости и небольшого контура. В этом случае направлением поля будет точка места, где расположено малое очертание.

Удар на плоскую цепь с током

В таких условиях коэффициент B принимается как характеристика интенсивности МП в этой точке места и называется индукцией МП. Она считается величиной, объединяющей назначение вектора МИ с направлением магнитного поля в этой точке места.

МП, характеризующийся на некоторых участках одинаковым значением вектора МИ, называется равномерным МП. Индукция в международной системе (СИ) измеряется в единицах Тесла (TL). МИ однородного МП составляет 1 т, если она воздействует на плоскую электронную последовательность площадью 5 ‘= 1 м и током 7 = 1 А, расположенную так, что магнитные доли лежат в плоскости цепи p = 0,5 n sin p = 1 с коэффициентом t = 1 Нм.

Область места любой части, что связана с конкретным вектором, называется полем. Понятие строк широко используется для визуального представления ВП. В случае с линейным полем можно увидеть линию, так как сам вектор ориентирован тангенциально в любой точке. Трубчатая линия представляет собой область узла, ограниченную обилием соседних рядов, проделанных сквозь закрытое очертание. Представление векторного поля часто используется при описании различных взаимодействий тела. В частности, в отображении МП упоминается фон вектора магнитной индукции, определяющий в нём части и трубки МИ.

Электрическая зависимость

Британский физик Майкл Фарадей не сомневался в единственной природе явлений магнетизма в своей теореме. Изменяющийся во времени фон создаёт электронный и магнитный вид. В 1831 году Фарадей обнаружил появление индукции, которая легла в основу устройства для генераторов, преобразующих механическую энергию в электронную. А в 1835 г. немецкий математик Карл Гаусс определил аксиому, описывающую обозначение и зависимость напряжённости поля от величины заряда.

Появление электрической индукции замечено в появлении тока в проводящей цепи, которая либо лежит на изменяющемся во времени фоне, либо движется на непременном участке таким образом, что фактически число магнитных витков проникает в контуры трансформаций.

Для своих многочисленных экспериментов Фарадей воспользовался двумя катушками, магнитом, переключателем постоянного тока и гальванометром. Электронный поток мог зависеть и намагничивать кусок железа.

В результате экспериментов Фарадея были заложены основные особенности возникновения электрической индукции, и ток появляется:

  • в одной из катушек во время замыкания или размыкания электронной цепи внутри другой части;
  • когда энергия протекает в одном из элементов с поддержкой реостата;
  • при перемещении катушек относительно друг друга;
  • когда неизменный магнит движется относительно.

В замкнутом проводящем контуре ток появляется, когда число линий магнитной индукции изменяется, создавая плоскость, ограниченную цепью. И чем раньше перевести количество рядов МИ, тем больше генерируется индукционный ток в рамке. Это является основной причиной конфигурации численности последовательностей индукции.

Явление позволяет содержать и изменять число линий МИ, делая плоскость площадки, ограниченной неподвижной проводящей цепью, из-за конфигурации тока в катушке, расположенной рядом. Происходит максимальное изменение количества последовательностей МИ из-за смещения схемы на неоднородном фоне, плотность линий которого может изменяться на месте.

Источник

Единица измерения магнитного потока

Элементарный магнитный поток ($dФ$) сквозь малую поверхность $dS$ равен произведению проекции вектора магнитной индукции ($B_n$) на нормаль к элементарной площадке $dS$ на величину этой площадки:

Полный поток сквозь всю поверхность $S$ будет равен:

Если поверхность $S$ является плоской, находится она в однородном магнитном поле, причем перпендикулярно линиям индукции поля, то магнитный поток можно найти как:

Вебер — единица измерения магнитного потока в системе СИ

Единицу измерения магнитного потока можно определить исходя из выражения (3), как:

Единица измерения магнитного потока имеет собственное наименование — вебер (Вб). 1 Вебер — единица измерения магнитного потока в Международной системе единиц (СИ), это магнитный поток, который создает магнитное поле имеющее индукцию 1Тл через поперечное сечение площадью 1 $м^2$.

Иногда 1 вебер определяют иначе. Вебер (единица измерения магнитного потока) — это магнитный поток, при уменьшении которого до нуля, в сцепленной с ним электрической цепи, имеющей сопротивление один ом сквозь поперечное сечение проводника проходит заряд равный одному кулону. Данное определение вебера основывается на формуле:

где $\Delta q$ — заряд, который проходит в замкнутой цепи, при изменении магнитного потока $\Delta Ф$ сквозь поверхность, которую ограничивает цепь; $R$ — сопротивление рассматриваемой цепи. Исходя из формулы (4) вебер можно считать комбинацией следующих единиц:

Производная единица измерения магнитного потока вебер выражается через основные единицы системы СИ как:

Для обозначения кратных и дольных десятичных единиц измерения магнитного потока используют стандартные приставки системы СИ. Например, мВб (мили вебер): $1\ мВб=<10>^<-3\ >Вб;;$ ГВб (гига вебер) $1\ ГВб=<10>^<6\ >Вб.$

Максвелл — единица измерения магнитного потока в системе СГС

В системе СГС (сантиметр, грамм, секунда) единица измерения магнитного потока, так же как в СИ имеет свое наименование. Она называется максвелл (Мкс). С вебером максвелл соотносится как:

Максвелл — единица измерения магнитного потока, получил свое название в честь Дж. К. Максвелла в 1900 г.

Через плоский контур, площадью один квадратный сантиметр, находящийся в однородном магнитном поле с индукцией 1 гаусс (Гс) перпендикулярно направлению вектора магнитной индукции, проходит магнитный поток в один максвелл.

Примеры задач с решением

Задание. Получите вебер, как комбинацию основных единиц Международной системы, основываясь на его определении: $Вб=Кл\cdot Ом.$

Решение. Используя определение вебера- единицы измерения магнитного потока через произведение кулона на ом, рассмотрим как каждая из этих двух единиц выражается через основные единицы СИ. Так для единицы заряда имеем:

Читайте также:  Датчик измерения концентрации раствора

\[Кл=А\cdot с\ \left(1.1\right).\]

Для единицы сопротивления:

Используя (1.1) и (1.2) в определении единицы измерения магнитного потока, получаем:

Ответ. Единица измерения магнитного потока при определении как $Вб=Кл\cdot Ом$=$\ Тл\cdot м^2=\frac<м^2\cdot кг><с^2\cdot А>$

Задание. Какова величина магнитного потока, пронизывающего плоскую поверхность, площадь которой равна $S=50\ <см>^2$, если индукция магнитного поля составляет 0,4 Тл, при этом рассматриваемая поверхность расположена под углом $\beta =$300 к направлению вектора магнитной индукции поля? Запишите ответ в единицах системы СГС.

Решение. Сделаем рисунок.

По определению магнитный поток через плоскую поверхность в однородном поле равен:

где $\alpha $ — угол меду нормалью к плоскости и направлением вектора $\overline$. Следует обратить внимание на то, что в условии задачи угол в 300 — это угол между направлением вектора индукции и плоскостью, следовательно, необходимый для решения задачи угол равен:

\[\alpha =90-\beta \ \left(2.2\right).\]

Так как задачу следует решать в какой-либо, но одной системе единиц, то переведем площадь поверхности в единицы СИ, получим:

Источник

Магнитная индукция. Определение и описание явления.

Магнитная индукция (обозначается символом В) – главная характеристика магнитного поля (векторная величина ), которая определяет силу воздействия на перемещающийся электрический заряд (ток) в магнитном поле, направленной в перпендикулярном направлении скорости движения.

Магнитная индукция определяется способностью влиять на объект с помощью магнитного поля. Эта способность проявляется при перемещении постоянного магнита в катушке, в результате чего в катушке индуцируется (возникает) ток, при этом магнитный поток в катушке также увеличивается.

Физический смысл магнитной индукции

Физически это явление объясняется следующим образом. Металл имеет кристаллическую структуру (катушка состоит из металла). В кристаллической решетке металла расположены электрические заряды — электроны. Если на металл не оказывать ни какое магнитное воздействие, то заряды (электроны) находятся в покое и никуда не движутся.

В результате чего в металле возникает электрический ток. Сила этого тока зависит от физических свойств магнита и катушки и скорости перемещения одного относительно другого.

При помещении металлической катушки в магнитное поле заряженные частицы металлический решетки (в кашутке) поворачиваются на определенный угол и размещаются вдоль силовых линий магнитного поля.

Чем выше сила магнитного поля, тем больше количество частиц поворачиваются и тем более однородным будет являться их расположение.

Магнитные поля, ориентированные в одном направлении не нейтрализуют друг друга, а складываются, формируя единое поле.

Формула магнитной индукции

где, В — вектор магнитной индукции, F — максимальная сила действующая на проводник с током, I — сила тока в проводнике, l — длина проводника.

Магнитный поток

Магнитный поток это скалярная величина, которая характеризует действие магнитной индукции на некий металлический контур.

Магнитная индукция определяется числом силовых линий, проходящих через 1 см2 сечения металла.

Магнитометры, используемые для ее измерения, называют теслометрами.

Источник

Магнитный поток — определение, формулы и расчеты индукции

Наблюдение за спектрами

В соответствии с плотностью линий магнитного поля (МП) можно увидеть величину вектора индукции, а согласно направленности силовых рядов — его течение. Наблюдение за спектрами постоянного тока и катушки на самом деле показывает, что при удалении проводника индукция МП уменьшается и довольно быстро.

Магнитный фон называется:

  1. С различным выведением в разных точках — гетерогенным. Неоднородный фон — это часть прямолинейного и радиального тока, вне соленоида, неизменённого магнита и т. д.
  2. С индукцией во всех точках — однородным полем. Графически такой МФ представлен силовыми линиями, которые считаются равноотстоящими параллельными частями. Этот случай является фоном изнутри длинного соленоида, а также полем между близкими соседними плоскими наконечниками электромагнита.

Произведение индукции поля, проникающего в контур от его области, называется потоком МИ или элементарным МП. Определение было дано и изучено британским физиком Фарадеем. Он отметил, что эта концепция на самом деле позволяет глубже рассмотреть совместный характер магнитных и электрических явлений.

Обозначая поток буквой f, площадью контура S и углом между направлением вектора индукции B и нормальной частью n к области α, можно написать магнитный поток формулой:

МП является скалярным размером. Например, поскольку плотность силовых рядов случайного магнитного поля равна его индукции, он уравнивается всему количеству линий, которые проникают в цепь. С изменением поля поток, который пронизывает контур, также меняется.

Единица измерения магнитного потока — вебер. Определение СИ струи считается линия, площадь которой 1 м², оказавшаяся на равномерном фоне с индукцией 1 Вт / м2 и перпендикулярная вектору. Это устройство будет обозначаться:

1 Вт = 1 Вт / м2 — 1 м².

Особенности течения

Скорость изменения магнитного потока генерирует электронный фон, имеющий замкнутые блоки питания (вихревое поле). Этот фон рассматривается в проводнике как циркуляция внешних сил. Это явление называется электрической индукцией, а мощность, которую можно определить, генерируемая в этом случае, является индуцированной ЭДС поверхности.

Поток подчёркивает вероятность характеристики всего магнита или видов других источников МП. Если индукция выдвигает на первый план вероятность, характерную её эффекту в любой отдельной точке, поток будет целым. Это вторая по значимости особенность поля. Если МИ функционирует как силовая часть МП, поток считается её энергетической линией.

Возвращаясь к экспериментам, можно сказать, что фактически любая электромагнитная катушка может рассматриваться как 1 закрытая. Это схема, по которой будет течь магнитный поток вектора индукции, тогда ток МИ электронов будет замечен при потокосцеплении.

Таким образом, непосредственно под действием струи в замкнутом проводнике образуется электронный фон. И в течение этого времени он будет генерировать ток.

Магнитная индукция

Согласно прогрессивным научным представлениям об электрических явлениях, МП неразрывно связан с током и не может присутствовать без него. Невозможно предположить электроток без МП. В том числе в случае неизменного магнита связывают этот фон с молекулярными линиями.

Если в место, где находится МП, поставить иглу, она стремится заимствовать определённое состояние, которое фактически показывает ориентационные качества МП. Скоординированное направление в этой точке места должно учитывать пункт назначения, где установлена ось, — это свободноподвешенная бесконечно небольшая магнитная стрелка, середина которой выровнена с точкой начального места. При этом из 2 возможных направлений вдоль оси стрелки МП символически присваивается назначение от южного конца на север.

Можно получить более яркое представление о направленности поля, если имеется ряд линий, где оси всех стрелок будут относительно касательными. Эти части называются магнитными магистралями.

Набор рядов упоминается как МП. Если бесконечно уменьшать площадь контура, притягивая его к точке, можно прийти к выражению для бесконечно малой стадии d, T активно в контуре маленькой области s, где угол P имеет конкретное значение между нормальностью к плоскости и небольшого контура. В этом случае направлением поля будет точка места, где расположено малое очертание.

Удар на плоскую цепь с током

В таких условиях коэффициент B принимается как характеристика интенсивности МП в этой точке места и называется индукцией МП. Она считается величиной, объединяющей назначение вектора МИ с направлением магнитного поля в этой точке места.

МП, характеризующийся на некоторых участках одинаковым значением вектора МИ, называется равномерным МП. Индукция в международной системе (СИ) измеряется в единицах Тесла (TL). МИ однородного МП составляет 1 т, если она воздействует на плоскую электронную последовательность площадью 5 ‘= 1 м и током 7 = 1 А, расположенную так, что магнитные доли лежат в плоскости цепи p = 0,5 n sin p = 1 с коэффициентом t = 1 Нм.

Область места любой части, что связана с конкретным вектором, называется полем. Понятие строк широко используется для визуального представления ВП. В случае с линейным полем можно увидеть линию, так как сам вектор ориентирован тангенциально в любой точке. Трубчатая линия представляет собой область узла, ограниченную обилием соседних рядов, проделанных сквозь закрытое очертание. Представление векторного поля часто используется при описании различных взаимодействий тела. В частности, в отображении МП упоминается фон вектора магнитной индукции, определяющий в нём части и трубки МИ.

Электрическая зависимость

Британский физик Майкл Фарадей не сомневался в единственной природе явлений магнетизма в своей теореме. Изменяющийся во времени фон создаёт электронный и магнитный вид. В 1831 году Фарадей обнаружил появление индукции, которая легла в основу устройства для генераторов, преобразующих механическую энергию в электронную. А в 1835 г. немецкий математик Карл Гаусс определил аксиому, описывающую обозначение и зависимость напряжённости поля от величины заряда.

Читайте также:  Сбор электрической цепи измерение силы тока

Появление электрической индукции замечено в появлении тока в проводящей цепи, которая либо лежит на изменяющемся во времени фоне, либо движется на непременном участке таким образом, что фактически число магнитных витков проникает в контуры трансформаций.

Для своих многочисленных экспериментов Фарадей воспользовался двумя катушками, магнитом, переключателем постоянного тока и гальванометром. Электронный поток мог зависеть и намагничивать кусок железа.

В результате экспериментов Фарадея были заложены основные особенности возникновения электрической индукции, и ток появляется:

  • в одной из катушек во время замыкания или размыкания электронной цепи внутри другой части;
  • когда энергия протекает в одном из элементов с поддержкой реостата;
  • при перемещении катушек относительно друг друга;
  • когда неизменный магнит движется относительно.

В замкнутом проводящем контуре ток появляется, когда число линий магнитной индукции изменяется, создавая плоскость, ограниченную цепью. И чем раньше перевести количество рядов МИ, тем больше генерируется индукционный ток в рамке. Это является основной причиной конфигурации численности последовательностей индукции.

Явление позволяет содержать и изменять число линий МИ, делая плоскость площадки, ограниченной неподвижной проводящей цепью, из-за конфигурации тока в катушке, расположенной рядом. Происходит максимальное изменение количества последовательностей МИ из-за смещения схемы на неоднородном фоне, плотность линий которого может изменяться на месте.

Источник

Единица измерения магнитного потока

Элементарный магнитный поток ($dФ$) сквозь малую поверхность $dS$ равен произведению проекции вектора магнитной индукции ($B_n$) на нормаль к элементарной площадке $dS$ на величину этой площадки:

Полный поток сквозь всю поверхность $S$ будет равен:

Если поверхность $S$ является плоской, находится она в однородном магнитном поле, причем перпендикулярно линиям индукции поля, то магнитный поток можно найти как:

Вебер — единица измерения магнитного потока в системе СИ

Единицу измерения магнитного потока можно определить исходя из выражения (3), как:

Единица измерения магнитного потока имеет собственное наименование — вебер (Вб). 1 Вебер — единица измерения магнитного потока в Международной системе единиц (СИ), это магнитный поток, который создает магнитное поле имеющее индукцию 1Тл через поперечное сечение площадью 1 $м^2$.

Иногда 1 вебер определяют иначе. Вебер (единица измерения магнитного потока) — это магнитный поток, при уменьшении которого до нуля, в сцепленной с ним электрической цепи, имеющей сопротивление один ом сквозь поперечное сечение проводника проходит заряд равный одному кулону. Данное определение вебера основывается на формуле:

где $\Delta q$ — заряд, который проходит в замкнутой цепи, при изменении магнитного потока $\Delta Ф$ сквозь поверхность, которую ограничивает цепь; $R$ — сопротивление рассматриваемой цепи. Исходя из формулы (4) вебер можно считать комбинацией следующих единиц:

Производная единица измерения магнитного потока вебер выражается через основные единицы системы СИ как:

Для обозначения кратных и дольных десятичных единиц измерения магнитного потока используют стандартные приставки системы СИ. Например, мВб (мили вебер): $1\ мВб=<10>^<-3\ >Вб;;$ ГВб (гига вебер) $1\ ГВб=<10>^<6\ >Вб.$

Максвелл — единица измерения магнитного потока в системе СГС

В системе СГС (сантиметр, грамм, секунда) единица измерения магнитного потока, так же как в СИ имеет свое наименование. Она называется максвелл (Мкс). С вебером максвелл соотносится как:

Максвелл — единица измерения магнитного потока, получил свое название в честь Дж. К. Максвелла в 1900 г.

Через плоский контур, площадью один квадратный сантиметр, находящийся в однородном магнитном поле с индукцией 1 гаусс (Гс) перпендикулярно направлению вектора магнитной индукции, проходит магнитный поток в один максвелл.

Примеры задач с решением

Задание. Получите вебер, как комбинацию основных единиц Международной системы, основываясь на его определении: $Вб=Кл\cdot Ом.$

Решение. Используя определение вебера- единицы измерения магнитного потока через произведение кулона на ом, рассмотрим как каждая из этих двух единиц выражается через основные единицы СИ. Так для единицы заряда имеем:

\[Кл=А\cdot с\ \left(1.1\right).\]

Для единицы сопротивления:

Используя (1.1) и (1.2) в определении единицы измерения магнитного потока, получаем:

Ответ. Единица измерения магнитного потока при определении как $Вб=Кл\cdot Ом$=$\ Тл\cdot м^2=\frac<м^2\cdot кг><с^2\cdot А>$

Задание. Какова величина магнитного потока, пронизывающего плоскую поверхность, площадь которой равна $S=50\ <см>^2$, если индукция магнитного поля составляет 0,4 Тл, при этом рассматриваемая поверхность расположена под углом $\beta =$300 к направлению вектора магнитной индукции поля? Запишите ответ в единицах системы СГС.

Решение. Сделаем рисунок.

По определению магнитный поток через плоскую поверхность в однородном поле равен:

где $\alpha $ — угол меду нормалью к плоскости и направлением вектора $\overline$. Следует обратить внимание на то, что в условии задачи угол в 300 — это угол между направлением вектора индукции и плоскостью, следовательно, необходимый для решения задачи угол равен:

\[\alpha =90-\beta \ \left(2.2\right).\]

Так как задачу следует решать в какой-либо, но одной системе единиц, то переведем площадь поверхности в единицы СИ, получим:

Источник

Магнитный поток

Магнитный поток
Φ <\displaystyle \Phi >
Размерность ML 2 T −2 I −1
Единицы измерения
СИ Вб
СГС Мкс
Примечания
Скалярная величина
Классическая электродинамика
Электричество · Магнетизм

Магнитный поток — физическая величина, равная произведению модуля вектора магнитной индукции B → <\displaystyle <\vec >> на площадь S и косинус угла α между векторами B → <\displaystyle <\vec >> и нормалью n <\displaystyle \mathbf > . Поток Φ <\displaystyle \Phi > как интеграл вектора магнитной индукции B → <\displaystyle <\vec >> через конечную поверхность S определяется через интеграл по поверхности:

Φ = ∬ S B ⋅ d S <\displaystyle \Phi =\iint \limits _\mathbf \cdot <\rm >\mathbf > .

При этом векторный элемент dS площади поверхности S определяется как

d S = d S ⋅ n <\displaystyle <\rm >\mathbf =<\rm >S\cdot \mathbf > ,

где n <\displaystyle \mathbf > — единичный вектор, нормальный к поверхности.

Также магнитный поток можно рассчитать как скалярное произведение магнитной индукции B на вектор площади ΔS :

Φ = ( B ⋅ Δ S ) = B ⋅ Δ S ⋅ cos ⁡ α <\displaystyle \Phi =(\mathbf \cdot \Delta \mathbf )=B\cdot \Delta S\cdot \cos \alpha > ,

где α — угол между вектором магнитной индукции и нормалью к плоскости S .

Магнитный поток Φ через контур L также можно выразить через циркуляцию векторного потенциала A магнитного поля по этому контуру:

Φ = ∮ L ⁡ A ⋅ d l <\displaystyle \Phi =\oint \limits _\mathbf \cdot \mathbf

> .

Содержание

Единицы измерения

В СИ единицей магнитного потока является вебер (Вб, размерность — Вб = В·с = кг·м²·с -2 ·А -1 ), в системе СГС — максвелл (Мкс, 1 Вб = 10 8 Мкс ).

Измерительные приборы

Прибор для измерения магнитных потоков называется флюксметром (от лат. fluxus — «течение» и греч. metron — мера) или веберметром.

Теорема Гаусса для магнитной индукции

В соответствии с теоремой Гаусса для магнитной индукции поток вектора магнитной индукции ( B ) через любую замкнутую поверхность S равен нулю:

∮ S ⁡ B ⋅ d S = 0 <\displaystyle \oint \limits _\mathbf \cdot <\text>\mathbf =0> .

Или, в дифференциальной форме — дивергенция магнитного поля B равна нулю:

div B = 0 <\displaystyle \operatorname

\,\mathbf =0> .

Это означает, что в классической электродинамике невозможно существование магнитных зарядов, которые создавали бы магнитное поле подобно тому, как электрические заряды создают электрическое поле.

Квантование магнитного потока

Значения магнитного потока Φ , проходящего через неодносвязный сверхпроводник (например, сверхпроводящее кольцо), дискретны и кратны кванту потока:

Φ 0 = h 2 e = 2.067833758 × 10 − 15 <\displaystyle \Phi _<0>=<\frac <2e>>=2.067833758\times 10^<-15>> Вб (СИ); Φ 0 = h c 2 e = 2 , 067833636 × 10 − 7 <\displaystyle \Phi _<0>=<\frac <2e>>=2,067833636\times 10^<-7>> Гаусс·см 2 (СГС).

Экспериментально квантование магнитного потока было обнаружено в 1961 году.

См. также

Ссылки

Это заготовка статьи по физике. Вы можете помочь проекту, дополнив её.

Что такое wiki2.info Вики является главным информационным ресурсом в интернете. Она открыта для любого пользователя. Вики это библиотека, которая является общественной и многоязычной.

Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License.

Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. wiki2.info является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).

Источник

Сравнить или измерить © 2021
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.