Меню

Единицы измерения момента трогания



Единицы измерения момента силы

Момент силы, крутящий момент, вращательный (вращающий момент) — векторная физическая величина, равная векторному произведению радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.
Момент силы измеряется в ньютон-метрах. 1 Н·м — момент силы, который производит сила 1 Н на рычаг длиной 1 м.
В метрологии и в приборах КИП и А, шкалы могут быть также проградуированы в других единицах.

Система СИ и внесистемные единицы

  • 1 Ньютон на метр [Н·м][N·m] = 1 Н·м
  • 1 Ньютон на сантиметр [Н·см][N·cm] = 0.01 Н·м
  • 1 Дина на метр [дин·м][dyn·m] = 0.00001 Н·м
  • 1 Дина на сантиметр [дин·см][dyn·cm] = 0.0000001 Н·м
  • 1 Килограмм силы на метр [кгс·м][kgf·m] = 9.80665 Н·м
  • 1 Килограмм силы на сантиметр [кгс·см][kgf·cm] = 0.0980665 Н·м
  • 1 Грамм силы на метр [гс·м][gf·m] = 0.00980665 Н·м
  • 1 Грамм силы на сантиметр [гс·см][gf·cm] = 0.0000980665 Н·м

США и Британия

В виду того, что в некоторых англоязычных странах вес и длина измеряются в национальных единицах, то и момент силы может измеряться в отличных от системы СИ единицах.

  • 1 Длинная (британская) тонна-сила на фут [tf·ft] = 3037.03220426234 Н·м
  • 1 Короткая (американская) тонна-сила на фут [tf·ft] = 2711.6358966628 Н·м
  • 1 Фунт-сила на фут [lbf·ft] = 1.35581794833 Н·м
  • 1 Фунт-сила на дюйм [lbf·in] = 0.11298482903 Н·м
  • 1 Унция-сила на дюйм [ozf·in] = 0.00706155181 Н·м

Источник

Вращающий момент. Вращающий момент: формула. Момент силы: определение

Вращение является типичным видом механического движения, которое часто встречается в природе и технике. Любое вращение возникает в результате воздействия некоторой внешней силы на рассматриваемую систему. Эта сила создает так называемый вращающий момент. Что он собой представляет, от чего зависит, рассматривается в статье.

Процесс вращения

Прежде чем рассматривать концепцию вращающего момента, дадим характеристику систем, к которым может быть применена эта концепция. Система вращения предполагает наличие в ней оси, вокруг которой осуществляется круговое движение или поворот. Расстояние от этой оси до материальных точек системы называется радиусом вращения.

С точки зрения кинематики, процесс характеризуется тремя угловыми величинами:

  • углом поворота θ (измеряется в радианах);
  • угловой скоростью ω (измеряется в радианах в секунду);
  • ускорением угловым α (измеряется в радианах в секунду квадратную).

Эти величины связаны друг с другом следующими равенствами:

Примерами вращения в природе являются движения планет по своим орбитам и вокруг своих осей, движения смерчей. В быту и технике рассматриваемое движение характерно для моторов двигателей, гаечных ключей, строительных кранов, открывания дверей и так далее.

Определение момента силы

Теперь перейдем к непосредственной теме статьи. Согласно физическому определению, момент силы представляет собой векторное произведение вектора приложения силы относительно оси вращения на вектор самой силы. Соответствующее математическое выражение можно записать так:

Здесь вектор r¯ направлен от оси вращения к точке приложения силы F¯.

В этой формуле вращающего момента M¯ сила F¯ может быть направлена как угодно относительно направления оси. Тем не менее параллельная оси компонента силы не будет создавать вращения, если ось жестко закреплена. В большинстве задач по физике приходится рассматривать силы F¯, которые лежат в плоскостях перпендикулярных оси вращения. В этих случаях абсолютное значение вращающего момента можно определить по следующей формуле:

Где β является углом между векторами r¯ и F¯.

Что такое рычаг силы?

Рычаг силы играет важную роль при определении величины момента силы. Чтобы понять, о чем идет речь, рассмотрим следующий рисунок.

Здесь показан некоторый стержень длиною L, который закреплен в точке вращения одним из своих концов. На другой конец действует сила F, направленная под острым углом φ. Согласно определению момента силы, можно записать:

Угол (180 o -φ) появился потому, что вектор L¯ направлен от закрепленного конца к свободному. Учитывая периодичность тригонометрической функции синуса, можно переписать это равенство в таком виде:

Теперь обратим внимание на прямоугольный треугольник, построенный на сторонах L, d и F. По определению функции синуса, произведение гипотенузы L на синус угла φ дает значение катета d. Тогда приходим к равенству:

Линейная величина d называется рычагом силы. Он равен расстоянию от вектора силы F¯ до оси вращения. Как видно из формулы, понятием рычага силы удобно пользоваться при вычислении момента M. Полученная формула говорит о том, что вращающий момент максимальный для некоторой силы F будет возникать только тогда, когда длина радиус-вектора r¯ (L¯ на рисунке выше) будет равна рычагу силы, то есть r¯ и F¯ будут взаимно перпендикулярны.

Направление действия величины M¯

Выше было показано, что вращающий момент — это векторная характеристика для данной системы. Куда направлен этот вектор? Ответить на этот вопрос не представляет особого труда, если вспомнить, что результатом произведения двух векторов является третий вектор, который лежит на оси, перпендикулярной плоскости расположения исходных векторов.

Остается решить, будет ли направлен момент силы вверх или вниз (на читателя или от него) относительно упомянутой плоскости. Определить это можно или по правилу буравчика, или с помощью правила правой руки. Приведем оба правила:

  • Правило правой руки. Если расположить правую кисть таким образом, чтобы четыре ее пальца двигались от начала вектора r¯ к его концу, а затем от начала вектора F¯ к его концу, то большой палец, оттопыренный, укажет на направление момента M¯.
  • Правило буравчика. Если направление вращения воображаемого буравчика совпадает с направлением вращательного движения системы, то поступательное движение буравчика укажет на направление вектора M¯. Напомним, что он вращается только по часовой стрелке.

Оба правила являются равноправными, поэтому каждый может использовать то, которое является для него более удобным.

При решении практических задач разное направление вращающего момента (вверх — вниз, влево — вправо) учитывается с помощью знаков «+» или «-«. Следует запомнить, что за положительное направление момента M¯ принято считать такое, которое приводит к вращению системы против часовой стрелки. Соответственно, если некоторая сила приводит к вращению системы по ходу стрелки часов, то создаваемый ее момент будет иметь отрицательную величину.

Физический смысл величины M¯

В физике и механике вращения величина M¯ определяет способность силы или суммы сил совершать вращение. Поскольку в математическом определении величины M¯ стоит не только сила, но и радиус-вектор ее приложения, то именно последний во многом определяет отмеченную вращательную способность. Чтобы понятнее было, о какой способности идет речь, приведем несколько примеров:

  • Каждый человек, хотя бы один раз в жизни пытался открыть дверь, взявшись не за ручку, а толкнув ее недалеко от петель. В последнем случае приходится прилагать значительное усилие, чтобы добиться желаемого результата.
  • Чтобы открутить гайку с болта, используют специальные гаечные ключи. Чем длиннее ключ, тем легче открутить гайку.
  • Чтобы ощутить важность рычага силы, предлагаем читателям проделать следующий эксперимент: взять стул и попытаться удержать его одной рукой на весу, в одном случае руку прислонить к телу, в другом — выполнить задачу на прямой руке. Последнее для многих окажется непосильной задачей, хотя вес стула остался тем же самым.

Единицы измерения момента силы

Несколько слов также следует сказать о том, в каких единицах в СИ измеряется вращающий момент. Согласно записанной для него формуле, он измеряется в ньютонах на метр (Н*м). Однако в этих единицах также измеряется работа и энергия в физике (1 Н*м = 1 джоуль). Джоуль для момента M¯ не применяется, поскольку работа является скалярной величиной, M¯ же — это вектор.

Тем не менее совпадение единиц момента силы с единицами энергии не является случайным. Работа по вращению системы, совершенная моментом M, рассчитывается по формуле:

Откуда получаем, что M также может быть выражен в джоулях на радиан (Дж/рад).

Динамика вращения

В начале статьи мы записали кинематические характеристики, которые используются для описания движения вращения. В динамике вращения главным уравнением, которое использует эти характеристики, является следующее:

Действие момента M на систему, имеющую момент инерции I, приводит к появлению углового ускорения α.

Данную формулу применяют, для определения угловых частот вращения в технике. Например, зная вращающий момент асинхронного двигателя, который зависит от частоты тока в катушке статора и от величины изменяющегося магнитного поля, а также зная инерционные свойства вращающегося ротора, можно определить, до какой скорости вращения ω раскручивается ротор двигателя за известное время t.

Пример решения задачи

Невесомый рычаг, длина которого составляет 2 метра, посередине имеет опору. Какой вес следует положить на один конец рычага, чтобы он находился в состоянии равновесия, если с другой стороны опоры на расстоянии 0,5 метра от нее лежит груз массой 10 кг?

Очевидно, что равновесие рычага наступит, если моменты сил, создаваемые грузами, будут равны по модулю. Сила, создающая момент в данной задаче, представляет собой вес тела. Рычаги силы равны расстояниям от грузов до опоры. Запишем соответствующее равенство:

Вес P2 получим, если подставим из условия задачи значения m1 = 10 кг, d1 = 0,5 м, d2 = 1 м. Записанное равенство дает ответ: P2 = 49,05 ньютона.

Источник

Единицы измерения момента трогания

Немного теории для полного понимания момента затяжки резьбовых соединений.

Момент силы, приложенный к гаечному ключу.

Момент силы (он же: крутящий момент, вращательный момент, вертящий момент, вращающий момент) — векторная физическая величина, равная произведению радиус-вектора, проведенного от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Но понятия «вращающий» и «крутящий» моменты в общем случае не тождественны, т.к в технике понятие «вращающий» момент рассматривается как внешнее усилие, прикладываемое к объекту, а «крутящий» — внутреннее усилие, возникающее в объекте под действием приложенных нагрузок (этим понятием оперируют в сопротивлении материалов).

В физике момент силы можно понимать как «вращающая сила». В системе СИ единицами измерения для момента силы является ньютон-метр, Символ момента силы M . Момент силы иногда называют моментом пары сил, это понятие возникло в трудах Архимеда над рычагами. Сила, приложенная к рычагу, умноженная на расстояние до оси вращения рычага, есть момент силы. Например, сила в 3 ньютона, приложенная к рычагу на расстоянии 2 метров от его оси вращения, это то же самое, что сила в 1 ньютон, приложенная к рычагу на расстоянии 6 метров до оси вращения. Более точно, момент силы частицы определяется как векторное произведение:

где F — сила, действующая на частицу, а r — радиус-вектор частицы.

Момент силы измеряется в ньютон-метрах. 1 Н•м — момент силы, который производит сила 1 Н на рычаг длиной 1 м. Сила приложена к концу рычага и направлена перпендикулярно ему.

Посчитать: — кликни на любое число
Определения величин: наведи на любую величину

Ньютон (Н, N) — Newton.

Производная единица системы СИ, имеющая специальное название.

1 ньютон равен силе, сообщающей телу массой 1 кг. ускорение 1 м/с 2 в направлении ее действия.

Названа в честь Исаака Ньютона (1643-1727)- английского физика и математика, создавшего теоретические основы механики и астрономии и открывшего закон всемирного тяготения.

Дина (дин, dyn) — dyne.

Название происходит от греческого dýnamis — сила.

Дина — Основная единица давления системы СГС, которую в настоящее время вытеснила система СИ.

Дина равная силе, которая массе в 1 грамм сообщает ускорение 1 см/с 2 и , соответственно, соотношение между диной и ньютоном (единицей силы в Международной системе единиц): 1 Дина = 0,00001 Ньютонов (точно).

Килограмм-сила (кгс или кГ, kgf или kG), kilogram-force

Единица силы системы единиц МКГСС.

Равен силе, сообщающей телу массой один килограмм, ускорение 9,80665 м/с 2 (нормальное ускорение свободного падения, принятое 3-й Генеральной конференцией по мерам и весам, 1901).

1 кгс = 9,80665 ньютонов (точно).

В ряде европейских государств для килограмм-силы официально принято название килопонд (обозначается kp).

Фунт силы (lbf, иногда Lb), pound-force.

Британская единица силы.

Масса фунта-силы равна весу одного фунта.

Ускорение свободного падения в британской системе мер было равно 32,1740 футов в секунду за секунду, а после принятия международного значения нормального ускорения свободного падения (1901) равного 9,80665 м/c 2 , преобразовалось в 32,1740485564304 футов в секунду в секунду.

Читайте также:  Единицы измерения электроэнергии киловатт

Cейчас 1 фунт силы равен 4,4482216152605 ньютонов (точно) или 0,45359237 килограмм силы (точно).

kip (килофунт силы)

Единица силы, распространенная в США с 20-го века по настоящее время и используется в основном архитекторами и инженерами. Образовано от слияния ’kilo’ + ’pound’.

1 kip равен 1000 фунтов силы или 4448,2216152605 ньютонов (точно).

Грамм-сила, pond, понд (гс или Г, p, pond, G) pond, gramm — force.

Грамм-сила — дольная единица силы в системе единиц МКГСС .

В ряде стран эту меру силы называют pond (русское ’понд’ почти никогда не используется).

1 грамм силы равен 0,001 килограмм-силы (точно) или 0,00980665 ньютонов.

Также может быть определен как сила, сообщающая массе 1 грамм ускорение, равное 980,665 см/с 2 .

Источник

Момент силы, формулы

Момент силы – это характеристика вращательного воздействия силы на объект. Момент силы рассчитывают, как векторное произведение вектора силы и радиус-вектора, опущенного от центра вращения до точки, к которой приложена сила.

При этом понятия «крутящий» и «вращающий» нельзя отождествлять, потому что технически вращающим моментом принято считать внешнее усилие, которое прикладывается к телу, а крутящий момент обозначает внутреннее усилие, появляющееся в теле при нагрузке. Данное понятие применимо при расчете сопротивления материалов.

Основные понятия

Не нашли что искали?

Просто напиши и мы поможем

Момент силы – это вращающая сила. По международной системе СИ единицей измерения момента вращающей силы есть ньютон-метр. Архимед при работе с рычагами отмечал, что моментом силы также считается момент пары сил.

Таким образом, сила в \(3 Н\) , что действует на рычаг в точке, отдаленной на 2 м от оси вращения, формирует момент, что равняется силе в \(1 Н\) , что действует в точке, отдаленной на 6 м. Наиболее точным определением момента силы есть следующее выражение:
\(\vec =\vec\vec\) ,
где \(\vec \) – сила, что действует на объект;
\(\vec \) – радиус-вектор объекта.

С точки зрения физики момент силы есть псевдо векторной величиной, в отличие от энергии, которая есть величиной скалярной. Но совпадение их размерности не случайно. Момент силы величиной \(1 Н∙м\) , что приложена через целый оборот при совершении механической работы, передает энергию в \(2π\) Джоуля:
\(E=Mθ\) ,
где \(E\) – энергия;
\(θ\) – угол;
\(M\) – вращающий момент.

На сегодняшний день момент силы измеряют при помощи оптических, индуктивных и тензометрических приборов нагрузки.

Формулы для нахождения момента силы

Момент силы рассчитывают таким образом:
\(\vec = \vec\vec\) ,
где \(\vec\) – момент рычага;
\(\vec\) – сила действия.

Данная формула позволяет определить только значение момента силы, но не его направление. Когда сила перпендикулярна вектору \(r ⃗,\) то момент рычага равняется расстоянию от центра вращения до точки действия силы, а момент силы имеет наибольшее значение:
\(\vec=\vec\vec\)

Сложно разобраться самому?

Попробуй обратиться за помощью к преподавателям

Если сила воздействует на определённом расстоянии, это значит, что она делает механическую работу. Момент силы тоже делает работу, выполняя действие через угловое расстояние.
\(P = \vec \omega\)
где \(P\) – мощность, Ватт;
\(\vec\) – момент силы, ньютон-метр;
\(ω\) – угловая скорость, радиан/секунда.

Момент нескольких сил

Если тело закрепить на оси, то под воздействием пары сил оно будет вращаться вокруг этой оси. Если же пару сил приложить к свободному телу, то его вращение будет вокруг оси, проходящей через его центр тяжести.

Момент пары сил одинаков по отношению к любой оси, перпендикулярной плоскости пары. Суммарный момент M пары равняется произведению одной силы \(F\) на отдаленность этих сил \(L\) , то есть плечо пары, в независимости от длины отрезков, на которые плечо делит ось.

Если равнодействующая момента нескольких сил равняется нулю, то он будет одинаковым по отношению ко всем параллельным между собой осям. Поэтому действие на объект данных сил можно заменить воздействием одной пары сил с таким же моментом.

Источник

7.2: Классическая механика

Область классической механики включает изучение тел в движении, особенно физические законы, касающиеся тел, находящихся под воздействием сил. Большинство механических аспектов проектирования роботов тесно связано с концепциями из этой области. В данном блоке описываются несколько ключевых применяемых концепций классической механики.

СКОРОСТЬ — это мера того, насколько быстро перемещается объект. Обозначает изменение положения во времени (проще говоря, какое расстояние способен преодолеть объект за заданный период времени). Данная мера представлена в единицах расстояния, взятых в единицу времени, например, в количестве миль в час или футов в секунду.

ЧАСТОТА ВРАЩЕНИЯ – Скорость может также выражаться во вращении, то есть насколько быстро объект движется по кругу. Измеряется в единицах углового перемещения во времени (то есть в градусах в секунду), или в циклах вращения в единицу времени (например, в оборотах в минуту). Когда измерения представлены в оборотах в минуту (RPM), речь идет о частоте вращения. Есть речь идет об об/мин автомобильного двигателя, это означает, что измеряется скорость вращения двигателя.

УСКОРЕНИЕ – Изменение скорости во времени представляет собой ускорение. Чем больше ускорение, тем быстрее изменяется скорость. Если автомобиль развивает скорость от 0 до 60 миль в час за две секунды, в этом случае ускорение больше, чем когда он развивает скорость от 0 до 40 миль в час за тот же период времени. Ускорение — это мера изменения скорости. Отсутствие изменения означает отсутствие ускорения. Если объект движется с постоянной скоростью — ускорение отсутствует.

СИЛА — Ускорение является следствием воздействия сил, которые провоцируют изменение в движении, направлении или форме. Если вы нажимаете на объект, это означает, что вы прикладываете к нему силу. Робот ускоряется под воздействием силы, которую его колеса прикладывают к полу. Сила измеряется в фунтах или ньютонах.

Например, масса объекта воздействует на объект как сила вследствие гравитации (ускорение объекта в направлении центра Земли).

КРУТЯЩИЙ МОМЕНТ – Сила, направленная по кругу (вращение объекта), называется крутящим моментом. Крутящий момент — это вращающая сила. Если к объекту приложен крутящий момент, на границе первого возникает линейная сила. В примере с колесом, катящемся по земле, крутящий момент, приложенный к оси колеса, создает линейную силу на границе покрышки в точке ее контакта с поверхностью земли. Так и определяется крутящий момент — как линейная сила на границе круга. Крутящий момент определяется величиной силы, умноженной на расстояние от центра вращения (Сила х Расстояние = Крутящий момент). Крутящий момент измеряется в единицах силы, умноженной на расстояние, например, фунто-дюймах или ньютон-метрах.

В примере с колесом, катящемся по земле, если известен крутящий момент, приложенный к оси с закрепленным на ней колесом, мы можем рассчитать количество силы, прикладываемой колесом к поверхности. В этом случае, радиус колеса является расстоянием силы от центра вращения.

Сила = Крутящий момент/Радиус колеса

В примере с рукой робота, удерживающей объект, мы можем рассчитать крутящий момент, требуемый для поднятия объекта. Если объект обладает массой, равной 1 ньютону, а рука имеет длину 0,25 метра (объект располагается на расстоянии 0,25 метра от центра вращения), тогда

Крутящий момент = Сила х Расстояние = 1 ньютон х 0,25 метра = 0,25 ньютон-метров.

Это означает, что для удержания объекта в неподвижном положении, необходимо применить крутящий момент, равный 0,25 ньютон-метров. Чтобы переместить объект вверх, роботу необходимо приложить к нему крутящий момент, значение которого будет превышать 0,25 ньютон-метров, так как необходимо преодолеть силу гравитации. Чем больше крутящий момент робота, тем больше силы он прикладывает к объекту, тем больше ускорение объекта, и тем быстрее рука поднимет объект.

Для данных примеров, мы можем рассчитать крутящий момент, необходимый для подъем этих объектов.

Пример 7.2 — Крутящий момент = Сила х Расстояние = 1 ньютон х 0,125 метра = 0,125 ньютон-метров.

Для данного примера, длина рука равна половине длины руки из Примера 1, поэтому значение требуемого крутящего момента также в два раза меньше. Значение длины руки пропорционально значению требуемого крутящего момента. При равных исходных характеристиках объекта, чем короче рука, тем меньший крутящий момент необходим для подъема.

Пример 7.3 — Крутящий момент = Сила * Расстояние = 1 ньютон х 0,5 метра = 0,5 ньютон-метров.

Для данного примера, длина рука равна удвоенной длине руки из Примера 1, поэтому значение требуемого крутящего момента также в два раза больше.

Еще одна точка зрения относительно ограниченного крутящего момента в соединении руки робота заключается в следующем: более короткая рука сможет поднять объект большей массы, чем более длинная рука; однако, для первой доступная высота подъема объекта будет меньше, чем для второй.

Эти примеры иллюстрируют руку робота, поднимающую объекты разной массы. Какова взаимосвязь с требуемым количеством крутящего момента?

Пример 4 — Крутящий момент = Сила х Расстояние = ½ ньютона х 0,25 метра = 0,125 ньютон-метров.

Пример 5 — Крутящий момент = Сила х Расстояние = 2 ньютона х 0,25 метра = 0,5 ньютон-метров.

Эти примеры иллюстрируют уменьшение значения требуемого крутящего момента по мере снижения массы объекта. Масса пропорциональна крутящему моменту, необходимому для ее подъема. Чем тяжелее объект, тем больше крутящий момент, требуемый для его подъема.

Проектировщики роботов должны обратить внимание на ключевые взаимосвязи между значениями крутящего момента, длины руки и массы объекта.

РАБОТА – Мера силы, приложенной на расстоянии, называется работой. Например, для удерживания объекта необходимо 10 фунтов силы. Далее, чтобы поднять этот объект на высоту 10 дюймов, требуется определенное количество работы. Количество работы, требуемое для подъема объекта на высоту 20 дюймов, удваивается. Работа также понимается как изменение энергии.

МОЩНОСТЬ — Большинство людей полагает, что мощность является термином из области электрики, но мощность также относится и к механике.

Мощность — это количество работы в единицу времени. Насколько быстро кто-то может выполнить работу?

В робототехнике принято понимать мощность как ограничение, так как соревновательные робототехнические системы имеют ограничения в части выходной мощности. Если роботу требуется поднять массу в 2 ньютона (прилагая 2 ньютона силы), скорость подъема будет ограничиваться количеством выходной мощности робота. Если робот способен произвести достаточное количество мощности, он сможет быстро поднять объект. Если он способен произвести лишь малое количество энергии, подъем объекта будет производиться медленно (либо не будет производиться вообще!).

Мощность определяется как Сила, умноженная на Скорость (насколько быстро выполняется толчок при постоянной скорости), и обычно выражается в Ваттах.

Мощность [Ватты] = Сила [Ньютоны] х Скорость [Метры в секунду]

1 Ватт = 1 (Ньютон х Метр) / Секунда

Как это применяется в соревновательной робототехнике? К проектам роботов применяются определенные ограничения. Проектировщики соревновательных роботов, использующие систему проектирования VEX Robotics Design, также должны учитывать физические ограничения, связанные с применением электромоторов. Электромотор обладает ограниченной мощностью, поэтому он может производить только определенное количество работы с заданной скоростью.

Примечание: все перспективные концепции имеют базовое описание. Более глубоко обсуждать эти физические свойства учащиеся будут в процессе обучения в ВУЗах, если выберут область STEM в качестве направления обучения.

Источник

Единицы измерения момента силы

Момент силы, крутящий момент, вращательный (вращающий момент) — векторная физическая величина, равная векторному произведению радиус-вектора, проведённого от оси вращения к точке приложения силы, на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.
Момент силы измеряется в ньютон-метрах. 1 Н·м — момент силы, который производит сила 1 Н на рычаг длиной 1 м.
В метрологии и в приборах КИП и А, шкалы могут быть также проградуированы в других единицах.

Система СИ и внесистемные единицы

  • 1 Ньютон на метр [Н·м][N·m] = 1 Н·м
  • 1 Ньютон на сантиметр [Н·см][N·cm] = 0.01 Н·м
  • 1 Дина на метр [дин·м][dyn·m] = 0.00001 Н·м
  • 1 Дина на сантиметр [дин·см][dyn·cm] = 0.0000001 Н·м
  • 1 Килограмм силы на метр [кгс·м][kgf·m] = 9.80665 Н·м
  • 1 Килограмм силы на сантиметр [кгс·см][kgf·cm] = 0.0980665 Н·м
  • 1 Грамм силы на метр [гс·м][gf·m] = 0.00980665 Н·м
  • 1 Грамм силы на сантиметр [гс·см][gf·cm] = 0.0000980665 Н·м
Читайте также:  Готовая лабораторная работа по физике измерение влажности воздуха

США и Британия

В виду того, что в некоторых англоязычных странах вес и длина измеряются в национальных единицах, то и момент силы может измеряться в отличных от системы СИ единицах.

  • 1 Длинная (британская) тонна-сила на фут [tf·ft] = 3037.03220426234 Н·м
  • 1 Короткая (американская) тонна-сила на фут [tf·ft] = 2711.6358966628 Н·м
  • 1 Фунт-сила на фут [lbf·ft] = 1.35581794833 Н·м
  • 1 Фунт-сила на дюйм [lbf·in] = 0.11298482903 Н·м
  • 1 Унция-сила на дюйм [ozf·in] = 0.00706155181 Н·м

Источник

Вращающий момент. Вращающий момент: формула. Момент силы: определение

Вращение является типичным видом механического движения, которое часто встречается в природе и технике. Любое вращение возникает в результате воздействия некоторой внешней силы на рассматриваемую систему. Эта сила создает так называемый вращающий момент. Что он собой представляет, от чего зависит, рассматривается в статье.

Процесс вращения

Прежде чем рассматривать концепцию вращающего момента, дадим характеристику систем, к которым может быть применена эта концепция. Система вращения предполагает наличие в ней оси, вокруг которой осуществляется круговое движение или поворот. Расстояние от этой оси до материальных точек системы называется радиусом вращения.

С точки зрения кинематики, процесс характеризуется тремя угловыми величинами:

  • углом поворота θ (измеряется в радианах);
  • угловой скоростью ω (измеряется в радианах в секунду);
  • ускорением угловым α (измеряется в радианах в секунду квадратную).

Эти величины связаны друг с другом следующими равенствами:

Примерами вращения в природе являются движения планет по своим орбитам и вокруг своих осей, движения смерчей. В быту и технике рассматриваемое движение характерно для моторов двигателей, гаечных ключей, строительных кранов, открывания дверей и так далее.

Определение момента силы

Теперь перейдем к непосредственной теме статьи. Согласно физическому определению, момент силы представляет собой векторное произведение вектора приложения силы относительно оси вращения на вектор самой силы. Соответствующее математическое выражение можно записать так:

Здесь вектор r¯ направлен от оси вращения к точке приложения силы F¯.

В этой формуле вращающего момента M¯ сила F¯ может быть направлена как угодно относительно направления оси. Тем не менее параллельная оси компонента силы не будет создавать вращения, если ось жестко закреплена. В большинстве задач по физике приходится рассматривать силы F¯, которые лежат в плоскостях перпендикулярных оси вращения. В этих случаях абсолютное значение вращающего момента можно определить по следующей формуле:

Где β является углом между векторами r¯ и F¯.

Что такое рычаг силы?

Рычаг силы играет важную роль при определении величины момента силы. Чтобы понять, о чем идет речь, рассмотрим следующий рисунок.

Здесь показан некоторый стержень длиною L, который закреплен в точке вращения одним из своих концов. На другой конец действует сила F, направленная под острым углом φ. Согласно определению момента силы, можно записать:

Угол (180 o -φ) появился потому, что вектор L¯ направлен от закрепленного конца к свободному. Учитывая периодичность тригонометрической функции синуса, можно переписать это равенство в таком виде:

Теперь обратим внимание на прямоугольный треугольник, построенный на сторонах L, d и F. По определению функции синуса, произведение гипотенузы L на синус угла φ дает значение катета d. Тогда приходим к равенству:

Линейная величина d называется рычагом силы. Он равен расстоянию от вектора силы F¯ до оси вращения. Как видно из формулы, понятием рычага силы удобно пользоваться при вычислении момента M. Полученная формула говорит о том, что вращающий момент максимальный для некоторой силы F будет возникать только тогда, когда длина радиус-вектора r¯ (L¯ на рисунке выше) будет равна рычагу силы, то есть r¯ и F¯ будут взаимно перпендикулярны.

Направление действия величины M¯

Выше было показано, что вращающий момент — это векторная характеристика для данной системы. Куда направлен этот вектор? Ответить на этот вопрос не представляет особого труда, если вспомнить, что результатом произведения двух векторов является третий вектор, который лежит на оси, перпендикулярной плоскости расположения исходных векторов.

Остается решить, будет ли направлен момент силы вверх или вниз (на читателя или от него) относительно упомянутой плоскости. Определить это можно или по правилу буравчика, или с помощью правила правой руки. Приведем оба правила:

  • Правило правой руки. Если расположить правую кисть таким образом, чтобы четыре ее пальца двигались от начала вектора r¯ к его концу, а затем от начала вектора F¯ к его концу, то большой палец, оттопыренный, укажет на направление момента M¯.
  • Правило буравчика. Если направление вращения воображаемого буравчика совпадает с направлением вращательного движения системы, то поступательное движение буравчика укажет на направление вектора M¯. Напомним, что он вращается только по часовой стрелке.

Оба правила являются равноправными, поэтому каждый может использовать то, которое является для него более удобным.

При решении практических задач разное направление вращающего момента (вверх — вниз, влево — вправо) учитывается с помощью знаков «+» или «-«. Следует запомнить, что за положительное направление момента M¯ принято считать такое, которое приводит к вращению системы против часовой стрелки. Соответственно, если некоторая сила приводит к вращению системы по ходу стрелки часов, то создаваемый ее момент будет иметь отрицательную величину.

Физический смысл величины M¯

В физике и механике вращения величина M¯ определяет способность силы или суммы сил совершать вращение. Поскольку в математическом определении величины M¯ стоит не только сила, но и радиус-вектор ее приложения, то именно последний во многом определяет отмеченную вращательную способность. Чтобы понятнее было, о какой способности идет речь, приведем несколько примеров:

  • Каждый человек, хотя бы один раз в жизни пытался открыть дверь, взявшись не за ручку, а толкнув ее недалеко от петель. В последнем случае приходится прилагать значительное усилие, чтобы добиться желаемого результата.
  • Чтобы открутить гайку с болта, используют специальные гаечные ключи. Чем длиннее ключ, тем легче открутить гайку.
  • Чтобы ощутить важность рычага силы, предлагаем читателям проделать следующий эксперимент: взять стул и попытаться удержать его одной рукой на весу, в одном случае руку прислонить к телу, в другом — выполнить задачу на прямой руке. Последнее для многих окажется непосильной задачей, хотя вес стула остался тем же самым.

Единицы измерения момента силы

Несколько слов также следует сказать о том, в каких единицах в СИ измеряется вращающий момент. Согласно записанной для него формуле, он измеряется в ньютонах на метр (Н*м). Однако в этих единицах также измеряется работа и энергия в физике (1 Н*м = 1 джоуль). Джоуль для момента M¯ не применяется, поскольку работа является скалярной величиной, M¯ же — это вектор.

Тем не менее совпадение единиц момента силы с единицами энергии не является случайным. Работа по вращению системы, совершенная моментом M, рассчитывается по формуле:

Откуда получаем, что M также может быть выражен в джоулях на радиан (Дж/рад).

Динамика вращения

В начале статьи мы записали кинематические характеристики, которые используются для описания движения вращения. В динамике вращения главным уравнением, которое использует эти характеристики, является следующее:

Действие момента M на систему, имеющую момент инерции I, приводит к появлению углового ускорения α.

Данную формулу применяют, для определения угловых частот вращения в технике. Например, зная вращающий момент асинхронного двигателя, который зависит от частоты тока в катушке статора и от величины изменяющегося магнитного поля, а также зная инерционные свойства вращающегося ротора, можно определить, до какой скорости вращения ω раскручивается ротор двигателя за известное время t.

Пример решения задачи

Невесомый рычаг, длина которого составляет 2 метра, посередине имеет опору. Какой вес следует положить на один конец рычага, чтобы он находился в состоянии равновесия, если с другой стороны опоры на расстоянии 0,5 метра от нее лежит груз массой 10 кг?

Очевидно, что равновесие рычага наступит, если моменты сил, создаваемые грузами, будут равны по модулю. Сила, создающая момент в данной задаче, представляет собой вес тела. Рычаги силы равны расстояниям от грузов до опоры. Запишем соответствующее равенство:

Вес P2 получим, если подставим из условия задачи значения m1 = 10 кг, d1 = 0,5 м, d2 = 1 м. Записанное равенство дает ответ: P2 = 49,05 ньютона.

Источник

Что такое крутящий момент и почему он важен (объяснение для неспециалиста)

Крутящий момент часто описывается как сила с которой вращается двигатель. Представьте себе крутящий момент (в контексте двигателя) как объем работы, которую двигатель производит за радиан (обороты). На самом деле крутящий момент измеряется в ньютон-метрах (Нм) -> сила * движение = энергия (работа).

Величина крутящего момента, создаваемая двигателем внутреннего сгорания, сильно варьируется в зависимости от текущей скорости вращения двигателя. Вот почему, как правило, технические характеристики транспортных средств дают (пиковый) крутящий момент коленчатого вала, а также обороты, при которых двигатель его достигает: 200Нм при 3000 оборотов/мин.

Простой пример для понимания крутящего момента — сравнение с фермером, работающим на поле:
1. Число оборотов двигателя — это количество ударов мотыги, которые фермер может сделать за минуту.
2. Крутящий момент двигателя — с какой мощностью удар фермера падает на землю.
Мощность двигателя — это комбинация и того и другого и представляет, сколько полей фермер может подготовить за определенное время.

Фермер может использовать очень маленькую мотыгу (низкий крутящий момент) и быть очень быстрым (высокие обороты), или наносить несколько (низкие обороты) очень мощных ударов (высокий крутящий момент). Количество подготовленных полей может быть одинаковым даже при очень разных значениях «крутящего момента».

В случае двигателя величина крутящего момента сама по себе совершенно бессмысленна, поскольку крутящий момент может быть умножен на передачу, например, описанный выше двигатель может быть приспособлен с отношением 1: 2 для получения 400Нм при 1500 оборотов/ мин. Делая меньше оборотов, двигатель сможет производить больше работы (энергии) за оборот. Но обратите внимание, что вся энергия, произведенная за тот же промежуток времени, постоянна.

Мощностью называется работа силы, совершаемая в единицу времени. Чтобы получить мощность двигателя при определенных оборотах, вы умножаете крутящий момент на число оборотов (рад/с):
200Нм * 3000 оборотов/ мин = 62.84 кВт
400Нм * 1500 оборотов/ мин = 62.84 кВт

Можете сами поэкспериментировать с расчетами тут

Вы видите, что мощность двигателей равна, поэтому оба могут выполнять одну и ту же работу за одно и то же время, даже если один из двигателей обладает в два раза большим крутящим моментом. Оба могут ускорять объект определенной массы в одно за одно и то же время. Вот почему обычно ЛС (лошадиные силы) / кВт являются более значимым способом описания производительности двигателя. кВт — это 1000 Дж/с.

КРУТЯЩИЙ МОМЕНТ = энергия на единицу вращения

МОЩНОСТЬ = энергия на единицу времени

Так почему крутящий момент важен? Он как раз и не важен:
Рассмотрим типичную машину (1500 кг), разгоняющуюся от 0 до 100 км/ч (28 м/с).

Рассчитаем количество кинетической энергии, необходимой для ускорения машины, по знаменитой формуле 1/2𝑚𝑉 ^2 (V квадрат).

0,5 ∗ 1500 кг ∗ (100 км/ч)^2 = 600000 Джоулей

Рассмотрим оба двигателя, которые мы упоминали выше. У них 62 кВт, но сильно отличающиеся значения крутящего момента.

Оба двигателя разгонят автомобиль с 0 до 100 км / ч за:

600 кДж / 62 кВт = 600000 Дж / 62000 Дж/сек. = 10 секунд
Теоретически…

На практике это будет несколько иначе, потому что, когда вы ведете автомобиль, вы не можете поддерживать двигатель на желаемой скорости, вам постоянно нужно переключать передачи, и при ускорении обороты двигателя будут расти. Это означает, что для получения пикового ускорения вам нужно будет поддерживать двигатель около точки пиковой мощности, которая обычно отличается от точки пикового крутящего момента.
Так крутящий момент имеет значение? Нет. В какой-то степени важна точка максимального крутящего момента (обороты / мин.) по сравнению с общим доступным диапазоном оборотов. Например, сравните эти двигатели:
— Большой турбодизель с максимальным крутящим моментом при
1250 об. / мин и 200 л.с. при 4000 об. / мин
— Мотоциклетный атмосферный газовый двигатель объемом 900 куб. см с максимальным крутящим моментом при 11000 об / мин и 200 л.с. при 13000 об. / мин

Читайте также:  Лазерные средства измерения расстояний

Второй двигатель будет иметь менее трети крутящего момента первого, но оба будут способны разгонять одну и ту же массу с одинаковой скоростью, тянуть одинаковый вес в гору, если он будет использоваться в точке максимальной мощности. Но первый двигатель будет иметь приличную мощность от 1500 об. / мин до 4000 об. / мин, то есть от 30% до 100% от доступного диапазона. Второй двигатель будет иметь приличную мощность только от 60% до 100% диапазона оборотов.

Первый двигатель тяжелый, но эффективный, он требует большой трансмиссии и тяжелого сцепления. Он идеально подходит для больших грузовиков или небольших судов, где важна эффективность и вес не имеет большого значения. Второй двигатель неэффективный, но легкий, он может быть полезен для мотоциклов, небольших гоночных автомобилей или даже для небольших городских автомобилей.

Но это не имеет ничего общего с крутящим моментом само по себе, просто двигатели с низким крутящим моментом, как правило, более эффективны, чем быстрые двигатели с низким крутящим моментом.

Важность трансмиссии и передаточных чисел:

При фиксированном передаточном числе и фиксированном соединении между коленчатым валом и шинами, крутящий момент колеса и, следовательно, ускорение будут пропорциональны крутящему моменту двигателя. В этом состоянии пиковое ускорение наступает, когда двигатель имеет пиковое значение крутящего момента.

Это может сбивать с толку, потому что то, что я сказал что максимальное ускорение наступает в точке максимальной мощности, а не в точке максимального крутящего момента.

Путаница возникает из-за того, что энергия, необходимая для ускорения транспортного средства на фиксированную величину, увеличивается со скоростью.

Запомните формулу:
𝐾𝑒 = 1 / 2𝑚𝑉 ^2
термин V ^ 2 означает, что с увеличением скорости вам нужно все больше и больше энергии для ускорения.

Так почему это важно?

Рассмотрим ситуацию с фиксированным передаточным числом 1: 1 и ускорением автомобиля во всем диапазоне оборотов.

В точке максимального крутящего момента (скажем, 1000 об. / мин.) транспортное средство будет подвергаться максимальному ускорению и будет двигаться с определенной скоростью V1.

В точке максимальной мощности (скажем, 3000 об. / мин. — 30 км. / ч.) автомобиль будет подвергаться меньшему ускорению, но его скорость V2 будет намного выше.

Поскольку V2 > V1, мощность, необходимая для ускорения транспортного средства на определенную величину в V2, будет выше. Даже если при V2 ускорение будет ниже, увеличение кинетической энергии будет выше из-за более высокой мощности при 3000 об. / мин.

Для получения фиксированной величины ускорения при V1 = 1000 об. / мин., вам нужна мощность, пропорциональная: (игнорируем здесь единицы измерения)

На V2 = 30 000 об. / мин. вам нужно:
30 ^ 2 = 900

Таким образом, чтобы получить такое же ускорение при 30 км. / ч., вам нужно в 9 раз больше энергии, чем при 10 км. / ч.!

Теперь представьте другой сценарий, в котором на V1 у вас будет более короткая передача, поэтому обороты двигателя будут 3000, даже если вы на скорости 1000 об. / мин.. В этом состоянии двигатель будет работать в точке максимальной мощности, крутящий момент на коленчатом валу будет ниже, но крутящий момент на колесе будет выше, поскольку теперь у вас есть отношение 3: 1, а крутящий момент двигателя умножается на 3. В этом состоянии вы имеете максимально возможное ускорение, потому что двигатель передает кинетическую энергию на транспортное средство с максимально возможной скоростью.

Уф, кажется закончил ))
Много текста, я понимаю. Но, как говорится, не море топит, а лужа.

Источник

Вращающий момент. Вращающий момент: формула. Момент силы: определение

Вращение является типичным видом механического движения, которое часто встречается в природе и технике. Любое вращение возникает в результате воздействия некоторой внешней силы на рассматриваемую систему. Эта сила создает так называемый вращающий момент. Что он собой представляет, от чего зависит, рассматривается в статье.

Процесс вращения

Прежде чем рассматривать концепцию вращающего момента, дадим характеристику систем, к которым может быть применена эта концепция. Система вращения предполагает наличие в ней оси, вокруг которой осуществляется круговое движение или поворот. Расстояние от этой оси до материальных точек системы называется радиусом вращения.

С точки зрения кинематики, процесс характеризуется тремя угловыми величинами:

  • углом поворота θ (измеряется в радианах);
  • угловой скоростью ω (измеряется в радианах в секунду);
  • ускорением угловым α (измеряется в радианах в секунду квадратную).

Эти величины связаны друг с другом следующими равенствами:

Примерами вращения в природе являются движения планет по своим орбитам и вокруг своих осей, движения смерчей. В быту и технике рассматриваемое движение характерно для моторов двигателей, гаечных ключей, строительных кранов, открывания дверей и так далее.

Определение момента силы

Теперь перейдем к непосредственной теме статьи. Согласно физическому определению, момент силы представляет собой векторное произведение вектора приложения силы относительно оси вращения на вектор самой силы. Соответствующее математическое выражение можно записать так:

Здесь вектор r¯ направлен от оси вращения к точке приложения силы F¯.

В этой формуле вращающего момента M¯ сила F¯ может быть направлена как угодно относительно направления оси. Тем не менее параллельная оси компонента силы не будет создавать вращения, если ось жестко закреплена. В большинстве задач по физике приходится рассматривать силы F¯, которые лежат в плоскостях перпендикулярных оси вращения. В этих случаях абсолютное значение вращающего момента можно определить по следующей формуле:

Где β является углом между векторами r¯ и F¯.

Что такое рычаг силы?

Рычаг силы играет важную роль при определении величины момента силы. Чтобы понять, о чем идет речь, рассмотрим следующий рисунок.

Здесь показан некоторый стержень длиною L, который закреплен в точке вращения одним из своих концов. На другой конец действует сила F, направленная под острым углом φ. Согласно определению момента силы, можно записать:

Угол (180 o -φ) появился потому, что вектор L¯ направлен от закрепленного конца к свободному. Учитывая периодичность тригонометрической функции синуса, можно переписать это равенство в таком виде:

Теперь обратим внимание на прямоугольный треугольник, построенный на сторонах L, d и F. По определению функции синуса, произведение гипотенузы L на синус угла φ дает значение катета d. Тогда приходим к равенству:

Линейная величина d называется рычагом силы. Он равен расстоянию от вектора силы F¯ до оси вращения. Как видно из формулы, понятием рычага силы удобно пользоваться при вычислении момента M. Полученная формула говорит о том, что вращающий момент максимальный для некоторой силы F будет возникать только тогда, когда длина радиус-вектора r¯ (L¯ на рисунке выше) будет равна рычагу силы, то есть r¯ и F¯ будут взаимно перпендикулярны.

Направление действия величины M¯

Выше было показано, что вращающий момент — это векторная характеристика для данной системы. Куда направлен этот вектор? Ответить на этот вопрос не представляет особого труда, если вспомнить, что результатом произведения двух векторов является третий вектор, который лежит на оси, перпендикулярной плоскости расположения исходных векторов.

Остается решить, будет ли направлен момент силы вверх или вниз (на читателя или от него) относительно упомянутой плоскости. Определить это можно или по правилу буравчика, или с помощью правила правой руки. Приведем оба правила:

  • Правило правой руки. Если расположить правую кисть таким образом, чтобы четыре ее пальца двигались от начала вектора r¯ к его концу, а затем от начала вектора F¯ к его концу, то большой палец, оттопыренный, укажет на направление момента M¯.
  • Правило буравчика. Если направление вращения воображаемого буравчика совпадает с направлением вращательного движения системы, то поступательное движение буравчика укажет на направление вектора M¯. Напомним, что он вращается только по часовой стрелке.

Оба правила являются равноправными, поэтому каждый может использовать то, которое является для него более удобным.

При решении практических задач разное направление вращающего момента (вверх — вниз, влево — вправо) учитывается с помощью знаков «+» или «-«. Следует запомнить, что за положительное направление момента M¯ принято считать такое, которое приводит к вращению системы против часовой стрелки. Соответственно, если некоторая сила приводит к вращению системы по ходу стрелки часов, то создаваемый ее момент будет иметь отрицательную величину.

Физический смысл величины M¯

В физике и механике вращения величина M¯ определяет способность силы или суммы сил совершать вращение. Поскольку в математическом определении величины M¯ стоит не только сила, но и радиус-вектор ее приложения, то именно последний во многом определяет отмеченную вращательную способность. Чтобы понятнее было, о какой способности идет речь, приведем несколько примеров:

  • Каждый человек, хотя бы один раз в жизни пытался открыть дверь, взявшись не за ручку, а толкнув ее недалеко от петель. В последнем случае приходится прилагать значительное усилие, чтобы добиться желаемого результата.
  • Чтобы открутить гайку с болта, используют специальные гаечные ключи. Чем длиннее ключ, тем легче открутить гайку.
  • Чтобы ощутить важность рычага силы, предлагаем читателям проделать следующий эксперимент: взять стул и попытаться удержать его одной рукой на весу, в одном случае руку прислонить к телу, в другом — выполнить задачу на прямой руке. Последнее для многих окажется непосильной задачей, хотя вес стула остался тем же самым.

Единицы измерения момента силы

Несколько слов также следует сказать о том, в каких единицах в СИ измеряется вращающий момент. Согласно записанной для него формуле, он измеряется в ньютонах на метр (Н*м). Однако в этих единицах также измеряется работа и энергия в физике (1 Н*м = 1 джоуль). Джоуль для момента M¯ не применяется, поскольку работа является скалярной величиной, M¯ же — это вектор.

Тем не менее совпадение единиц момента силы с единицами энергии не является случайным. Работа по вращению системы, совершенная моментом M, рассчитывается по формуле:

Откуда получаем, что M также может быть выражен в джоулях на радиан (Дж/рад).

Динамика вращения

В начале статьи мы записали кинематические характеристики, которые используются для описания движения вращения. В динамике вращения главным уравнением, которое использует эти характеристики, является следующее:

Действие момента M на систему, имеющую момент инерции I, приводит к появлению углового ускорения α.

Данную формулу применяют, для определения угловых частот вращения в технике. Например, зная вращающий момент асинхронного двигателя, который зависит от частоты тока в катушке статора и от величины изменяющегося магнитного поля, а также зная инерционные свойства вращающегося ротора, можно определить, до какой скорости вращения ω раскручивается ротор двигателя за известное время t.

Пример решения задачи

Невесомый рычаг, длина которого составляет 2 метра, посередине имеет опору. Какой вес следует положить на один конец рычага, чтобы он находился в состоянии равновесия, если с другой стороны опоры на расстоянии 0,5 метра от нее лежит груз массой 10 кг?

Очевидно, что равновесие рычага наступит, если моменты сил, создаваемые грузами, будут равны по модулю. Сила, создающая момент в данной задаче, представляет собой вес тела. Рычаги силы равны расстояниям от грузов до опоры. Запишем соответствующее равенство:

Вес P2 получим, если подставим из условия задачи значения m1 = 10 кг, d1 = 0,5 м, d2 = 1 м. Записанное равенство дает ответ: P2 = 49,05 ньютона.

Источник