Меню

Единицы измерения потенциала точки электростатического поля



Потенциал электрического поля — формулы определения, характеристика и единицы измерения

Вещественное значение электрического поля

Учёные длительное время изучали секрет электроэнергии. Главная награда в ее исследовании дана Эрстеду. Его основное открытие — впервые экспериментально установлена связь между электрическими и магнитными явлениями в 1819—1820 гг.

Стало ясно, что колебания предполагают суперпозицию изменяющихся во времени электрических и магнитных полей. Вектор магнитной интенсивности перпендикулярен электрическому вектору, связанному через длинную среду (некоторая физическая величина). Электростатическое воздействие — это действие через поле.

Особенности воздействия:

  • Каждый электрический заряд создаёт вокруг себя электростатическое поле.
  • Электрополем называется пространство, в котором действуют силы напряжения.
  • Величины, характеризующие поле в этой точке, — это интенсивность и потенциал.

Напряжённостью электростатического явления в этой точке называется отношение электросилы, действующей на помещённый в этой точке пробный заряд (положительный) к значению этого заряда:

  • E =F /q (над E и F вектор).
  • Единица напряжённости электростатического поля — 1 N/C.

Напряжённость электрополя в этой точке всегда имеет отдачу в соответствии с направлением силы, действующей на положительный пробный заряд.

Значение напряжённости электростатического поля на расстоянии R от источника Q может обозначаться простой формулой: E=k |Q|/R2.

Для графического представления поля используются линии — кривые, для которых вектор напряжённости в каждой точке имеет касательную часть. Поле со сферической симметрией называется центральным. Если линии расположены параллельно друг другу, а интенсивность имеет в каждой точке одинаковое значение, то поле называется однородным.

Разность потенциалов в физике в данный момент — это отношение энергии точечного положительного пробного груза, помещённого в этой точке к значению этого заряда: V=Ep/q.

Единицей измерения потенциала точки электрического поля является 1 В (вольт).

Потенциал электрического поля, формула на расстоянии R от источника Q можно рассчитать: V=k Q/r.

Заряд вокруг объекта

Конечно, можно говорить о поле, если есть какой-либо его источник. Каждое электрическое тело создаёт вокруг себя градиент потенциала электрического поля. По сравнению с гравитационными полями, есть важное отличие:

  • Гравитационные силы являются силами притяжения и могут измеряться.
  • Силы электричества могут быть как силами притяжения, так и отталкивания.

Известно, что линии поля относятся к векторам силы, действующим на тело в этой точке. Учёные сошлись во мнении, что стрелки линии поля будут выставлять обратный вектор силы, действующей на отрицательный заряд. Следовательно, силовые линии «выходят» из зарядов положительных и «бегут» к отрицательным энергетическим зарядам.

Напряжённость электрополя

В электрическом поле, так же как и в гравитационном, возникает понятие напряжённости. Это говорит о том, какая сила будет действовать, а известно, что эта сила зависит от источника и от расстояния. Именно интенсивность — характеристика этого поля, которое можно зарядить. По определению, напряжённость электрополя — это отношение силы, действующей на его значение.

Если поле не вызвано одним источником, а, например, двумя положительными зарядами, то для вычисления интенсивности в этой точке пространства есть смысл применить принцип суперпозиции.

Например, есть данные центрального поля, создаваемые зарядом Q. Следует разместить на расстоянии R1 пробный заряд q. Делается работа по перемещению этого испытательного заряда на расстояние R2 от источника поля.

Для того чтобы система заряда двигалась с одинаковой скоростью, нужно постоянно действовать на него с усилием, уравновешивающем величину Куломба. Но вместе с изменением расстояния от источника эта сила меняется обратно пропорционально квадрату расстояния. Использовать нужно среднюю величину, действующую на пробный заряд.

Чтобы определить, является ли работа положительной или отрицательной, нужно подумать, каков угол между вектором приложенного усилия и вектором перемещения. Если пробный заряд притягивается источником поля, и работа, которую выполняют, перемещает этот заряд ближе к источнику, тогда нужно сбалансировать притяжение.

Одним словом, прилагают усилие, которое создаёт с вектором смещение на угол 180°. Если cos (α)= -1, то работа отрицательная. Но если источник имеет взаимодействие с грузом так, чтобы уравновесить силу, параллельную цепи смещения, так что условие α=0°, т. е. cos (α) = 1 — работа положительная.

Потенциальная энергия

Вычисляя потенциальную энергию испытательного заряда в этой точке поля, используют свойство, при котором разница потенциальной энергии в двух точках равна работе, выполняемой при перемещении этого значения из одной точки в другую (то же самое делали, включая энергию в гравитационном поле).

Для того чтобы вычислить потенциальную энергию в этой точке, нужно переместить пробный заряд в место, где потенциал равен нулю. Такое место находится в точке, бесконечно отдалённой от источника. Положительный или отрицательный знак потенциала выбирают в зависимости от того, отталкивают груз с источником или притягивают. Если заряд источника является отрицательным, то нахождение электростатического потенциала является таким же. Когда источник является положительным, потенциал — тоже.

Эквипотенциальные поверхности

Если предположить, что источником электрополя является точечно заряженная частица (т. е. поле центральное), из этого следует, что все точки пространства, которые находятся от него одинаково далеко, имеют равный потенциал. В пространстве совокупность таких точек образует поверхность шара, а заряд-источник находится в центре сферы.

Однако, если электрополе не имеет централизованного характера, всё равно можно назначить такие поверхности, что пробный заряд, размещённый в любой точке этой поверхности, будет иметь тот же потенциал. Например, в случае однородного поля такой поверхностью является любая плоскость, перпендикулярная линии поля.

Диэлектрики в электростатике

Кроме того, у направляющих есть ещё одна группа тел — это диэлектрики. Для начала необходимо уточнить разницу между диэлектриком и проводником. Проводники — это тела, в которых заряды могут свободно перемещаться. Примером проводника является медный провод. Если положить на него груз, а затем дотронуться до него рукой, то этот груз будет «всплывать» из проводника и, следовательно, разгрузит его.

Но если положительно электрифицировать стекло, которое является диэлектриком, то прикосновение через руку не приведёт к его разрядке. Электроны от конечности будут течь только в точке контакта, но это стекло будет по-прежнему наэлектризовано в местах, где к нему прикасаются.

Электроны в диэлектрике не могут свободно двигаться. Они ограничены атомами и молекулами, которые не могут покинуть. Но если поместить диэлектрик в поле разрядов между положительным и отрицательным зарядом, это расположение электронов и атомных ядер изменится. Эти частицы ведут себя как диполи. Такая позиция показывает все молекулы в диэлектрике.

Образуется цепочка диполей с зарядами, положительными с одной стороны, и отрицательными — с другой. Это явление называется диэлектрической поляризацией. Поляризованный диэлектрик создаёт своё поле, внутреннее, и у него вектор напряжённости всегда направлен противоположно полю, в котором расположен диэлектрик. Таким образом, вред от аварий при напряжении поля уменьшается.

Источник

Электростатический потенциал

Классическая электродинамика
Электричество · Магнетизм
Электростатика
Закон Кулона
Теорема Гаусса
Электрический дипольный момент
Электрический заряд
Электрическая индукция
Электрическое поле
Электростатический потенциал
Магнитостатика
Закон Био — Савара — Лапласа
Закон Ампера
Магнитный момент
Магнитное поле
Магнитный поток
Электродинамика
Векторный потенциал
Диполь
Потенциалы Лиенара — Вихерта
Сила Лоренца
Ток смещения
Униполярная индукция
Уравнения Максвелла
Электрический ток
Электродвижущая сила
Электромагнитная индукция
Электромагнитное излучение
Электромагнитное поле
Электрическая цепь
Закон Ома
Законы Кирхгофа
Индуктивность
Радиоволновод
Резонатор
Электрическая ёмкость
Электрическая проводимость
Электрическое сопротивление
Электрический импеданс
Ковариантная формулировка
Тензор электромагнитного поля
Тензор энергии-импульса
4-потенциал
4-ток
Известные учёные
Генри Кавендиш
Майкл Фарадей
Никола Тесла
Андре-Мари Ампер
Густав Роберт Кирхгоф
Джеймс Клерк (Кларк) Максвелл
Генри Рудольф Герц
Альберт Абрахам Майкельсон
Роберт Эндрюс Милликен
См. также: Портал:Физика

Электростатический потенциа́л (см. также кулоновский потенциал) — скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию поля, которой обладает единичный заряд, помещённый в данную точку поля. Единицей измерения потенциала является, таким образом, единица измерения работы, деленная на единицу измерения заряда (для любой системы единиц; подробнее о единицах измерения — см. ниже).

Электростатический потенциал — специальный термин для возможной замены общего термина электродинамики скалярный потенциал в частном случае электростатики (исторически электростатический потенциал появился первым, а скалярный потенциал электродинамики — его обобщение). Употребление термина электростатический потенциал определяет собой наличие именно электростатического контекста. Если такой контекст уже очевиден, часто говорят просто о потенциале без уточняющих прилагательных.

Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:

Читайте также:  Холодный спай измерение температуры

Напряжённость электростатического поля и потенциал связаны соотношением [1]

Здесь оператор набла, то есть в правой части равенства стоит минус градиент потенциала — вектор с компонентами, равными частным производным от потенциала по соответствующим (прямоугольным) декартовым координатам, взятый с противоположным знаком.

Воспользовавшись этим соотношением и теоремой Гаусса для напряжённости поля , легко увидеть, что электростатический потенциал удовлетворяет уравнению Пуассона. В единицах системы СИ:

где — электростатический потенциал (в вольтах), — объёмная плотность заряда (в кулонах на кубический метр), а — диэлектрическая проницаемость вакуума (в фарадах на метр).

Содержание

Неоднозначность определения потенциала

Поскольку потенциал (как и потенциальная энергия) может быть определён с точностью до произвольной постоянной (и все величины, которые можно измерить, а именно напряженности поля, силы, работы — не изменятся, если мы выберем эту постоянную так или по-другому), непосредственный физический смысл (по крайней мере, пока речь не идет о квантовых эффектах) имеет не сам потенциал, а разность потенциалов, которая определяется как:

где: — потенциал в точке 1, — потенциал в точке 2, — работа, совершаемая полем при переносе пробного заряда из точки 1 в точку 2. При этом считается, что все остальные заряды при такой операции «заморожены» — то есть неподвижны во время этого перемещения (имеется в виду вообще говоря скорее воображаемое, а не реальное перемещение, хотя в случае, если остальные заряды действительно закреплены — или пробный заряд исчезающе мал по величине — чтобы не вносить заметного возмущения в положнения других — и переносится достаточно быстро, чтобы остальные заряды не успели заметно переместиться за это время, формула оказывается верной и для вполне реальной работы при реальном перемещении).

Впрочем, иногда для снятия неоднозначности используют какие-нибудь «естественные» условия. Например, часто потенциал определяют таким образом, чтобы он был равен нулю на бесконечности для любого точечного заряда — и тогда для любой конечной системы зарядов выполнится на бесконечности это же условие, а над произволом выбора константы можно не задумываться (конечно, можно было бы выбрать вместо нуля любое другое число, но ноль — «проще»).

Единицы измерения

В СИ за единицу разности потенциалов принимают вольт (В). Разность потенциалов между двумя точками поля равна одному вольту, если для перемещения между ними заряда в один кулон нужно совершить работу в один джоуль: 1В = 1 Дж/Кл (L²MT −3 I −1 ). В СГС единица измерения потенциала не получила специального названия. Разность потенциалов между двумя точками равна одной единице потенциала СГСЭ, если для перемещения между ними заряда величиной одна единица заряда СГСЭ нужно совершить работу в один эрг. Приближенное соответствие между величинами: 1 В = 1/300 ед. потенциала СГСЭ

Использование термина

Широко используемые термины напряжение и электрический потенциал имеют несколько иной смысл, хотя нередко используются неточно как синонимы электростатического потенциала.

Кулоновский потенциал

Иногда термин кулоновский потенциал используется просто для обозначения электростатического потенциала, как полный синоним. Однако можно сказать, что в целом эти термины несколько различаются по оттенку и преимущественной области применения.

Чаще всего под кулоновским потенциалом имеют в виду электростатический потенциал одного точечного заряда (или нескольких точечных зарядов, полученный сложением кулоновского потенциала каждого из них). Зачастую даже в случае, когда имеется в виду потенциал, созданный непрерывно распределенными зарядами, если его называют кулоновским, это может подразумевать, что он выражен (или может быть выражен) всё же в виде суммы (интеграла) пусть и бесконечного числа элементов, на которые разбит заряженный объем, но всё же потенциал каждого рассчитан как потенциал точечного заряда. Однако, поскольку электростатический потенциал в принципе может быть выражен таким образом практически всегда (подробнее см. чуть ниже), то разграничение терминов всё же достаточно размывается.

Также под кулоновским могут понимать потенциал любой природы (то есть не обязательно электрический), который при точечном или сферически симметричном источнике имеет зависимость от расстояния 1/r (например, гравитационный потенциал в теории тяготения Ньютона, хотя последний чаще всё же называют ньютоновским, так как он был изучен в целом раньше), особенно если надо как-то обозначить весь этот класс потенциалов в отличие от потенциалов с другими зависимостями от расстояния.

Формула электростатического потенциала (кулоновского потенциала) точечного заряда:

(где K обозначен коэффициент, зависящий от системы единиц измерения — например в СИ K = 1/(4πε), q — величина заряда, r — расстояние от заряда-источника до точки, для которой рассчитывается потенциал).

  • Можно показать, что эта формула верна не только для точечных зарядов, но и для любого сферически симметричного заряда конечного размера, например, равномерно заряженного шара, правда, только в свободном от заряда пространстве — то есть например над поверхностью шара, а не внутри его.
  • Кулоновский потенциал в виде приведенной выше формулы используется в формуле кулоновской потенциальной энергии (потенциальной энергии взаимодействия системы электростатически взаимодействующих зарядов):

Источник

III. Основы электродинамики

Тестирование онлайн

Работа электростатического поля

Рассмотрим ситуацию: заряд q попадает в электростатическое поле. Это электростатическое поле тоже создается каким-то заряженным телом или системой тел, но нас это не интересует. На заряд q со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.


Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.

Потенциал

Система «заряд — электростатическое поле» или «заряд — заряд» обладает потенциальной энергией, подобно тому, как система «гравитационное поле — тело» обладает потенциальной энергией.

Физическая скалярная величина, характеризующая энергетическое состояние поля называется потенциалом данной точки поля. В поле помещается заряд q, он обладает потенциальной энергией W. Потенциал — это характеристика электростатического поля.

Вспомним потенциальную энергию в механике. Потенциальная энергия равна нулю, когда тело находится на земле. А когда тело поднимают на некоторую высоту, то говорят, что тело обладает потенциальной энергией.

Касательно потенциальной энергии в электричестве, то здесь нет нулевого уровня потенциальной энергии. Его выбирают произвольно. Поэтому потенциал является относительной физической величиной.

В механике тела стремятся занять положение с наименьшей потенциальной энергией. В электричестве же под действием сил поля положительно заряженное тело стремится переместится из точки с более высоким потенциалом в точку с более низким потенциалом, а отрицательно заряженное тело — наоборот.

Потенциальная энергия поля — это работа, которую выполняет электростатическая сила при перемещении заряда из данной точки поля в точку с нулевым потенциалом.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.

Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Разность потенциалов

Работа поля по перемещению заряда из одной точки в другую, называется разностью потенциалов

Эту формулу можно представить в ином виде

Эквипотенциальная поверхность (линия) — поверхность равного потенциала. Работа по перемещению заряда вдоль эквипотенциальной поверхности равна нулю.

Напряжение

Разность потенциалов называют еще электрическим напряжением при условии, что сторонние силы не действуют или их действием можно пренебречь.

Напряжение между двумя точками в однородном электрическом поле, расположенными по одной линии напряженности, равно произведению модуля вектора напряженности поля на расстояние между этими точками.

От величины напряжения зависит ток в цепи и энергия заряженной частицы.

Принцип суперпозиции

Потенциал поля, созданного несколькими зарядами, равен алгебраической (с учетом знака потенциала) сумме потенциалов полей каждого поля в отдельности

Как определить знак потенциала

При решении задач возникает много путаницы при определении знака потенциала, разности потенциалов, работы.

На рисунке изображены линии напряженности. В какой точке поля потенциал больше?

Верный ответ — точка 1. Вспомним, что линии напряженности начинаются на положительном заряде, а значит положительный заряд находится слева, следовательно максимальным потенциалом обладает крайняя левая точка.

Если происходит исследование поля, которое создается отрицательным зарядом, то потенциал поля вблизи заряда имеет отрицательное значение, в этом легко убедиться, если в формулу подставить заряд со знаком «минус». Чем дальше от отрицательного заряда, тем потенциал поля больше.

Читайте также:  Что называется секундой при измерении угла

Если происходит перемещение положительного заряда вдоль линий напряженности, то разность потенциалов и работа являются положительными. Если вдоль линий напряженности происходит перемещение отрицательного заряда, то разность потенциалов имеет знак «+», работа имеет знак «-«.

Порассуждайте самостоятельно отрицательные или положительные значения будут принимать работа и разность потенциалов, если заряд перемещать в обратном направлении относительно линий напряженности.

Зависимость напряженности и потенциала от расстояния

Потенциал поля, созданного равномерно заряженной сферой радиусом R и зарядом q на расстоянии r от центра сферы, равен

Напряжение в природе

Напряжение в клетках сетчатки глаза при попадания в них света около 0,01 В.
Напряжение в телефонных сетях может достигать 60 В.
Электрический угорь способен создавать напряжение до 650 В.

Энергия взаимодействия зарядов*

Из определения потенциала следует, что потенциальная энергия электростатического взаимодействия двух зарядов q1 и q2, находящихся на расстоянии r друг от друга, численно равна работе, которая совершается при перемещении точечного заряда q2 из бесконечности в данную точку поля, созданного зарядом q1

Аналогично Тогда энергия взаимодействия двух точечных зарядов

Источник

Электростатический потенциал

Электростатический потенциа́л — скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию, которой обладает единичный положительный пробный заряд, помещённый в данную точку поля. Единицей измерения потенциала в Международной системе единиц (СИ) является вольт (русское обозначение: В; международное: V), 1 В = 1 Дж/Кл (подробнее о единицах измерения — см. ниже).

Электростатический потенциал — специальный термин для возможной замены общего термина электродинамики скалярный потенциал в частном случае электростатики (исторически электростатический потенциал появился первым, а скалярный потенциал электродинамики — его обобщение). Употребление термина электростатический потенциал определяет собой наличие именно электростатического контекста. Если такой контекст уже очевиден, часто говорят просто о потенциале без уточняющих прилагательных.

Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:

φ = W p q p . <\displaystyle \varphi =<\frac >>>.>

∫ A B E ⋅ d l = φ ( A ) − φ ( B ) , <\displaystyle \int \limits _^\mathbf \cdot \mathbf

=\varphi (A)-\varphi (B),>

Здесь ∇ <\displaystyle \nabla > оператор набла, то есть в правой части равенства стоит минус градиент потенциала — вектор с компонентами, равными частным производным от потенциала по соответствующим (прямоугольным) декартовым координатам, взятый с противоположным знаком.

Воспользовавшись этим соотношением и теоремой Гаусса для напряжённости поля ∇ ⋅ E = ρ ε 0 <\displaystyle \mathbf <\nabla >\cdot \mathbf =<\rho \over \varepsilon _<0>>> , легко увидеть, что электростатический потенциал удовлетворяет уравнению Пуассона в вакууме. В единицах системы СИ:

∇ 2 φ = − ρ ε 0 , <\displaystyle <\nabla >^<2>\varphi =-<\rho \over \varepsilon _<0>>,>

где φ <\displaystyle \varphi > — электростатический потенциал (в вольтах), ρ <\displaystyle \rho > — объёмная плотность заряда (в кулонах на кубический метр), а ε 0 <\displaystyle \varepsilon _<0>> — электрическая постоянная (в фарадах на метр).

Содержание

Неоднозначность определения потенциала

Поскольку потенциал (как и потенциальная энергия) может быть определён с точностью до произвольной постоянной (и все величины, которые можно измерить, а именно напряженности поля, силы, работы — не изменятся, если мы выберем эту постоянную так или по-другому), непосредственный физический смысл (по крайней мере, пока речь не идет о квантовых эффектах) имеет не сам потенциал, а разность потенциалов, которая определяется как:

φ 1 − φ 2 = A f q ∗ 1 → 2 q ∗ , <\displaystyle \varphi _<1>-\varphi _<2>=<\frac ^1\to 2>>>>,>

При этом считается, что все остальные заряды при такой операции «заморожены» — то есть неподвижны во время этого перемещения (имеется в виду вообще говоря скорее воображаемое, а не реальное перемещение, хотя в случае, если остальные заряды действительно закреплены — или пробный заряд исчезающе мал по величине — чтобы не вносить заметного возмущения в положения других — и переносится достаточно быстро, чтобы остальные заряды не успели заметно переместиться за это время, формула оказывается верной и для вполне реальной работы при реальном перемещении).

Впрочем, иногда для снятия неоднозначности используют какие-нибудь «естественные» условия. Например, часто потенциал определяют таким образом, чтобы он был равен нулю на бесконечности для любого точечного заряда — и тогда для любой конечной системы зарядов выполнится на бесконечности это же условие, а над произволом выбора константы можно не задумываться (конечно, можно было бы выбрать вместо нуля любое другое число, но ноль — «проще»).

Единицы измерения

В СИ за единицу разности потенциалов принимают вольт (В).

Разность потенциалов между двумя точками поля равна одному вольту, если для перемещения между ними заряда в один кулон нужно совершить работу в один джоуль: 1 В = 1 Дж/Кл (L²MT −3 I −1 ).

В СГС единица измерения потенциала не получила специального названия. Разность потенциалов между двумя точками равна одной единице потенциала СГСЭ, если для перемещения между ними заряда величиной одна единица заряда СГСЭ нужно совершить работу в один эрг.

Приближенное соответствие между величинами: 1 В = 1/300 ед. потенциала СГСЭ.

Использование термина

Широко используемые термины напряжение и электрический потенциал имеют несколько иной смысл, хотя нередко используются неточно как синонимы электростатического потенциала. В отсутствие меняющихся магнитных полей напряжение равно разности потенциалов.

Кулоновский потенциал

Иногда термин кулоновский потенциал используется просто для обозначения электростатического потенциала как полный синоним. Однако можно сказать, что в целом эти термины несколько различаются по оттенку и преимущественной области применения.

Также под кулоновским могут понимать потенциал любой природы (то есть не обязательно электрический), который при точечном или сферически симметричном источнике имеет зависимость от расстояния 1 r <\displaystyle <\frac <1>>> (например, гравитационный потенциал в теории тяготения Ньютона, хотя последний чаще всё же называют ньютоновским, так как он был изучен в целом раньше), особенно если надо как-то обозначить весь этот класс потенциалов в отличие от потенциалов с другими зависимостями от расстояния.

Формула электростатического потенциала (кулоновского потенциала) точечного заряда в вакууме:

φ = k q r , <\displaystyle \varphi =k<\frac >,>

k = 1 4 π ε 0 <\displaystyle k=<\frac <1><4\pi \varepsilon _<0>>>> = 9·10 9 В·м/Кл,

  • Можно показать, что эта формула верна не только для точечных зарядов, но и для любого сферически симметричного заряда конечного размера, например, равномерно заряженного шара, правда, только в свободном от заряда пространстве — то есть, например, над поверхностью шара, а не внутри его.
  • Кулоновский потенциал в приведенном выше виде используется в формуле кулоновской потенциальной энергии (потенциальной энергии взаимодействия системы электростатически взаимодействующих зарядов): W = ∑ i j k q i q j r i j = 1 2 ∑ i ≠ j k q i q j r i j . <\displaystyle W=\sum _

См. также

Примечания

  1. ↑ Это соотношение очевидным образом получается из выражения для работы ∫ F ⋅ d l <\displaystyle \int \mathbf \cdot \mathbf
    >, где F = q E <\displaystyle \mathbf =q\mathbf >— сила, действующая на заряд q <\displaystyle q>со стороны электрического поля напряжённостью E <\displaystyle E>. Это выражение для работы, в сущности, и есть физический смысл формулы в основном тексте.
  2. ↑ В компонентах (в прямоугольных декартовых координатах) это равенство расписывается как E x = − ∂ φ ∂ x , <\displaystyle E_=-<\frac <\partial \varphi ><\partial x>>,>E y = − ∂ φ ∂ y , <\displaystyle E_=-<\frac <\partial \varphi ><\partial y>>,>E z = − ∂ φ ∂ z . <\displaystyle E_=-<\frac <\partial \varphi ><\partial z>>.>

Что такое wiki2.info Вики является главным информационным ресурсом в интернете. Она открыта для любого пользователя. Вики это библиотека, которая является общественной и многоязычной.

Основа этой страницы находится в Википедии. Текст доступен по лицензии CC BY-SA 3.0 Unported License.

Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. wiki2.info является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).

Источник

Потенциал электрического поля — формулы определения, характеристика и единицы измерения

Вещественное значение электрического поля

Учёные длительное время изучали секрет электроэнергии. Главная награда в ее исследовании дана Эрстеду. Его основное открытие — впервые экспериментально установлена связь между электрическими и магнитными явлениями в 1819—1820 гг.

Стало ясно, что колебания предполагают суперпозицию изменяющихся во времени электрических и магнитных полей. Вектор магнитной интенсивности перпендикулярен электрическому вектору, связанному через длинную среду (некоторая физическая величина). Электростатическое воздействие — это действие через поле.

Особенности воздействия:

  • Каждый электрический заряд создаёт вокруг себя электростатическое поле.
  • Электрополем называется пространство, в котором действуют силы напряжения.
  • Величины, характеризующие поле в этой точке, — это интенсивность и потенциал.

Напряжённостью электростатического явления в этой точке называется отношение электросилы, действующей на помещённый в этой точке пробный заряд (положительный) к значению этого заряда:

  • E =F /q (над E и F вектор).
  • Единица напряжённости электростатического поля — 1 N/C.

Напряжённость электрополя в этой точке всегда имеет отдачу в соответствии с направлением силы, действующей на положительный пробный заряд.

Значение напряжённости электростатического поля на расстоянии R от источника Q может обозначаться простой формулой: E=k |Q|/R2.

Для графического представления поля используются линии — кривые, для которых вектор напряжённости в каждой точке имеет касательную часть. Поле со сферической симметрией называется центральным. Если линии расположены параллельно друг другу, а интенсивность имеет в каждой точке одинаковое значение, то поле называется однородным.

Разность потенциалов в физике в данный момент — это отношение энергии точечного положительного пробного груза, помещённого в этой точке к значению этого заряда: V=Ep/q.

Единицей измерения потенциала точки электрического поля является 1 В (вольт).

Потенциал электрического поля, формула на расстоянии R от источника Q можно рассчитать: V=k Q/r.

Заряд вокруг объекта

Конечно, можно говорить о поле, если есть какой-либо его источник. Каждое электрическое тело создаёт вокруг себя градиент потенциала электрического поля. По сравнению с гравитационными полями, есть важное отличие:

  • Гравитационные силы являются силами притяжения и могут измеряться.
  • Силы электричества могут быть как силами притяжения, так и отталкивания.

Известно, что линии поля относятся к векторам силы, действующим на тело в этой точке. Учёные сошлись во мнении, что стрелки линии поля будут выставлять обратный вектор силы, действующей на отрицательный заряд. Следовательно, силовые линии «выходят» из зарядов положительных и «бегут» к отрицательным энергетическим зарядам.

Напряжённость электрополя

В электрическом поле, так же как и в гравитационном, возникает понятие напряжённости. Это говорит о том, какая сила будет действовать, а известно, что эта сила зависит от источника и от расстояния. Именно интенсивность — характеристика этого поля, которое можно зарядить. По определению, напряжённость электрополя — это отношение силы, действующей на его значение.

Если поле не вызвано одним источником, а, например, двумя положительными зарядами, то для вычисления интенсивности в этой точке пространства есть смысл применить принцип суперпозиции.

Например, есть данные центрального поля, создаваемые зарядом Q. Следует разместить на расстоянии R1 пробный заряд q. Делается работа по перемещению этого испытательного заряда на расстояние R2 от источника поля.

Для того чтобы система заряда двигалась с одинаковой скоростью, нужно постоянно действовать на него с усилием, уравновешивающем величину Куломба. Но вместе с изменением расстояния от источника эта сила меняется обратно пропорционально квадрату расстояния. Использовать нужно среднюю величину, действующую на пробный заряд.

Чтобы определить, является ли работа положительной или отрицательной, нужно подумать, каков угол между вектором приложенного усилия и вектором перемещения. Если пробный заряд притягивается источником поля, и работа, которую выполняют, перемещает этот заряд ближе к источнику, тогда нужно сбалансировать притяжение.

Одним словом, прилагают усилие, которое создаёт с вектором смещение на угол 180°. Если cos (α)= -1, то работа отрицательная. Но если источник имеет взаимодействие с грузом так, чтобы уравновесить силу, параллельную цепи смещения, так что условие α=0°, т. е. cos (α) = 1 — работа положительная.

Потенциальная энергия

Вычисляя потенциальную энергию испытательного заряда в этой точке поля, используют свойство, при котором разница потенциальной энергии в двух точках равна работе, выполняемой при перемещении этого значения из одной точки в другую (то же самое делали, включая энергию в гравитационном поле).

Для того чтобы вычислить потенциальную энергию в этой точке, нужно переместить пробный заряд в место, где потенциал равен нулю. Такое место находится в точке, бесконечно отдалённой от источника. Положительный или отрицательный знак потенциала выбирают в зависимости от того, отталкивают груз с источником или притягивают. Если заряд источника является отрицательным, то нахождение электростатического потенциала является таким же. Когда источник является положительным, потенциал — тоже.

Эквипотенциальные поверхности

Если предположить, что источником электрополя является точечно заряженная частица (т. е. поле центральное), из этого следует, что все точки пространства, которые находятся от него одинаково далеко, имеют равный потенциал. В пространстве совокупность таких точек образует поверхность шара, а заряд-источник находится в центре сферы.

Однако, если электрополе не имеет централизованного характера, всё равно можно назначить такие поверхности, что пробный заряд, размещённый в любой точке этой поверхности, будет иметь тот же потенциал. Например, в случае однородного поля такой поверхностью является любая плоскость, перпендикулярная линии поля.

Диэлектрики в электростатике

Кроме того, у направляющих есть ещё одна группа тел — это диэлектрики. Для начала необходимо уточнить разницу между диэлектриком и проводником. Проводники — это тела, в которых заряды могут свободно перемещаться. Примером проводника является медный провод. Если положить на него груз, а затем дотронуться до него рукой, то этот груз будет «всплывать» из проводника и, следовательно, разгрузит его.

Но если положительно электрифицировать стекло, которое является диэлектриком, то прикосновение через руку не приведёт к его разрядке. Электроны от конечности будут течь только в точке контакта, но это стекло будет по-прежнему наэлектризовано в местах, где к нему прикасаются.

Электроны в диэлектрике не могут свободно двигаться. Они ограничены атомами и молекулами, которые не могут покинуть. Но если поместить диэлектрик в поле разрядов между положительным и отрицательным зарядом, это расположение электронов и атомных ядер изменится. Эти частицы ведут себя как диполи. Такая позиция показывает все молекулы в диэлектрике.

Образуется цепочка диполей с зарядами, положительными с одной стороны, и отрицательными — с другой. Это явление называется диэлектрической поляризацией. Поляризованный диэлектрик создаёт своё поле, внутреннее, и у него вектор напряжённости всегда направлен противоположно полю, в котором расположен диэлектрик. Таким образом, вред от аварий при напряжении поля уменьшается.

Источник

Потенциал. Разность потенциалов. Напряжение.Эквипотенциальные поверхности

Потенциал. Разность потенциалов. Напряжение.

Потенциал электростатического поля — скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

— энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

— следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Разность потенциалов

Напряжение — разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

Единица разности потенциалов

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Связь между напряженностью и напряжением.

Из доказанного выше:

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

  1. Вектор напряженности направлен в сторону уменьшения потенциала.
  2. Электрическое поле существует, если существует разность потенциалов.
  3. Единица напряженности: Напряженность поля равна1 В/м, если между двумя точками поля, находящимися на расстоянии 1 м друг от друга существует разность потенциалов 1 В.

Эквипотенциальные поверхности.

ЭПП — поверхности равного потенциала.

— работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;

— вектор напряженности перпендикулярен к ЭПП в каждой ее точке.

Измерение электрического напряжения (разности потенциалов)

Между стержнем и корпусом — электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.

Потенциальная энергия взаимодействия зарядов.

Потенциал поля точечного заряда

Потенциал заряженного шара

а) Внутри шара Е=0, следовательно, потенциалы во всех точках внутри заряженного металлического шара одинаковы (. ) и равны потенциалу на поверхности шара.

б) Снаружи поле шара убывает обратно пропорционально расстоянию от центра шара, как и в случае точечного заряда.

Перераспределение зарядов при контакте заряженных проводников.

Переход зарядов происходит до тех пор, пока потенциалы контактирующих тел не станут равными.

Источник