Меню

Единицы измерения радиации таблица единицы измерения радиации



Единицы измерения и дозы радиации

Навигация по статье:

Содержание статьи

В каких единицах измеряется радиация и какие допустимые дозы безопасны для человека. Какой радиационный фон является естественным, а какой допустимым. Как перевести одни единицы измерения радиации в другие.

Допустимые дозы радиации

  • допустимый уровень радиоактивного излучения от естественных источников излучения, иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем

В последующие года, радиационный фон должен быть не выше 0,12 мкЗв/час

предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников, является

Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.

В чем измеряется радиация

Для оценки физических свойств радиоактивных материалов применяются такие величины как:

  • активность радиоактивного источника (Ки или Бк)
  • плотность потока энергии (Вт/м 2 )

Для оценки влияния радиации на вещество (не живые ткани), применяются:

  • поглощенная доза (Грей или Рад)
  • экспозиционная доза (Кл/кг или Рентген)

Для оценки влияния радиации на живые ткани, применяются:

  • эквивалентная доза (Зв или бэр)
  • эффективная эквивалентная доза (Зв или бэр)
  • мощность эквивалентной дозы (Зв/час)

Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется — поглощенной дозой.

Поглощенная доза — это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется — Грей (Гр).

1 Грей — это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза — это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется — Кулон/кг (Кл/кг).

1 Кл/кг= 3,88*10 3 Р

Используемая внесистемная единица экспозиционной дозы — Рентген (Р):

1 Р = 2,57976*10 -4 Кл/кг

Доза в 1 Рентген — это образование 2,083*10 9 пар ионов на 1см 3 воздуха

Оценка действия радиации на живые организмы

Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения. Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения. То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными. То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.

Эквивалентная доза — это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется — Зиверт (Зв).

Используемая внесистемная единица эквивалентной дозы — Бэр (бэр): 1 Зв = 100 бэр.

Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.

Для более лучшего понимания, можно немного по-другому дать определение «эквивалентной дозы радиации»:

Эквивалентная доза радиации — это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).

Допустимые нормы радиации

В России, с момента аварии в Чернобыле, наибольшее распространение имела внесистемная единица измерения мкР/час, отражающая экспозиционная дозу, которая характеризует меру ионизации вещества и поглощенную им дозу. Данная величина не учитывает различия в воздействии разных видов радиации (альфа, бета, нейтронного, гама, рентгеновского) на живой организм.

Наиболее объективная характеристика это — эквивалентная доза радиации, измеряемая в Зивертах. Для оценки биологического действия радиации в основном применяется мощность эквивалентной дозы радиации, измеряемая в Зивертах в час. То есть это оценка воздействия радиации на организм человека за единицу времени, в данном случае за час. Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину, указываемую в микро Зивертах — мкЗв/час:

1 Зв/час = 1000 мЗв/час = 1 000 000 мкЗв/час.

Могут применяться величины, характеризующие воздействия радиации за более длительный период, например, за 1 год.

К примеру, в нормах радиационной безопасности НРБ-99/2009 (пункты 3.1.2, 5.2.1, 5.4.4), указана норма допустимого воздействия радиации для населения от техногенных источников 1 мЗв/год.

В нормативных документах СП 2.6.1.2612-10 (пункт 5.1.2) и СанПиН 2.6.1.2800-10 (пункт 4.1.3) указаны приемлемые нормы для естественных источников радиоактивного излучения, величиной 5 мЗв/год. Используемая формулировка в документах — «приемлемый уровень», очень удачная, потому что он не допустимый (то есть безопасный), а именно приемлемый.

Но в нормативных документах есть противоречия по допустимому уровню радиации от природных источников. Если просуммировать все допустимые нормы, указанные в нормативных документах (МУ 2.6.1.1088-02, СанПиН 2.6.1.2800-10, СанПиН 2.6.1.2523-09), по каждому отдельному природному источнику излучения, то получим, что радиационный фон от всех природных источников радиации (включая редчайший газ радон) не должен составлять более 2,346 мЗв/год или 0,268 мкЗв/час. Это подробно рассмотрено в статье «Источники радиоактивных излучений». Однако в нормативных документах СП 2.6.1.2612-10 и СанПиН 2.6.1.2800-10 указана приемлемая норма для природных источников радиации в 5 мЗв/год или 0,57 мкЗ/час.

Как видите, разница в 2 раза. То есть к допустимому нормативному значению 0,268 мкЗв/час, без всяких обоснований применен повышающий коэффициент 2. Это скорее всего связано с тем, что нас в современном мире стали массово окружать материалы (прежде всего строительные материалы) содержащие радиоактивные элементы.

Обратите внимание, что в соответствии с нормативными документами, допустимый уровень радиации от естественных источников излучения 5 мЗв/год, а от искусственных (техногенных) источников радиоактивного излучения всего 1 мЗв/год.

Получается, что при уровне радиоактивного излучения от искусственных источников свыше 1 мЗв/год могут наступить негативные воздействия на человека, то есть привести к заболеваниям. Одновременно нормы допускают, что человек может жить без вреда для здоровья в районах, где уровень выше безопасного техногенного воздействия радиации в 5 раз, что соответствует допустимому уровню радиоактивного естественного фона в 5мЗв/год.

По механизму своего воздействия, видам излучения радиации и степени ее действия на живой организм, естественные и техногенные источники радиации не отличаются.

Все же, о чем говорят эти нормы? Давайте рассмотрим:

  • норма в 5 мЗв/год, указывает, что человек в течении года может максимально получить суммарную дозу радиации, поглощённую его телом в 5 мили Зиверт. В эту дозу не входят все источники техногенного воздействия, такие как медицинские, от загрязнения окружающей среды радиоактивными отходами, утечки радиации на АЭС и т.д.
  • для оценки, какая доза радиации допустима в виде фонового излучения в данный момент, посчитаем: общую годовую норму в 5000 мкЗв (5 мЗв) делим на 365 дней в году, делим на 24 часа в сутки, получим 5000/365/24 = 0,57 мкЗв/час
  • полученное значение 0,57 мкЗв/час, это предельно допустимое фоновое излучение от природных источников, которое считается приемлемым.
  • в среднем радиоактивный фон (он давно уже не естественный) колеблется в пределах 0,11 — 0,16 мкЗв/час. Это нормальный фон радиации.

Можно подвести итог по допустимым уровням радиации, действующим на сегодняшний день:

  • По нормативной документации, предельно допустимый уровень радиации (радиационный фон) от природных источников излучения может составлять 0,57 мкЗ/час.
  • Если не учитывать не обоснованный повышающий коэффициент, а также не учитывать действие редчайшего газа — радона, то получим, что в соответствии с нормативной документацией, нормальный радиационный фон от природных источников радиации не должен превышать 0,07 мкЗв/час
  • предельно допустимой нормативной суммарной дозой, полученной от всех техногенных источников, является 1 мЗв/год.

Можно с уверенность утверждать, что нормальный, безопасный радиационный фон в пределах 0,07 мкЗв/час, действовал на нашей планете до начала промышленного применения человеком радиоактивных материалов, атомной энергетики и атомного оружия (ядерные испытания).

А в результате деятельности человека, мы теперь считаем приемлемым радиационный фон в 8 раз превышающий естественное значение.

Стоит задуматься, что до начала активного освоения человеком атома, человечество не знало, что такое раковые заболевания в таком массовом количестве, как это происходит в современном мире. Если до 1945 года в мире регистрировались раковые заболевания, то их можно было считать единичными случаями по сравнению со статистикой после 1945 года.

Задумайтесь, по данным ВОЗ (всемирной организации здравоохранения), только в 2014 году на нашей планете умерли около 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших, то есть фактически каждый четвертый умерший на нашей планете, это человек умерший от ракового заболевания.

Так же по данным ВОЗ, ожидается, что в ближайшие 20 лет, число новых случаев заболевания раком будет увеличено примерно на 70% по сравнению с сегодняшним днем. То есть рак станет основной причиной смертности. И как бы тщательно, правительство государств с атомной энергетикой и атомным оружием, не маскировали бы общую статистику по причинам смертности от раковых заболеваний. Можно уверенно утверждать, что основной причиной раковых заболеваний, является воздействие на организм человека радиоактивных элементов и излучений.

Для перевода мкР/час в мкЗв/час можно воспользоваться упрощенной формулой перевода:

1 мкР/час = 0,01 мкЗв/час

1 мкЗв/час = 100 мкР/час

0,10 мкЗв/час = 10 мкР/час

Указанные формулы перевода — это допущения, так как мкР/час и мкЗв/час характеризуют разные величины, в первом случае это степень ионизации вещества, во втором это поглощённая доза живой тканью. Данный перевод не корректен, но он позволяет хотя бы приблизительно оценить риск.

Перевод величин радиации

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.

Единицы измерения, применяемые в СМИ

Часто, при публичном объявлении информации о радиационном загрязнении, официальными структурами осознано применяются величины, которые не позволяет объективно оценить степень угрозы. Например, при освещении аварии АЭС Фукусима-1 в Японии, приводятся данные по плотности загрязнения почвы или воды радиоизотопами в Беккерелях на единицу объема, или указывается активность радиоизотопов в Кюри. Данные величины характеризуют лишь сам радиоактивный изотоп, указывая на количество распадов ядер элемента за единицу времени и не дают представления о его потенциальном воздействии на вещество или живые организмы.

Читайте также:  Что такое коэффициент пересчета единиц измерения

Более объективной величиной, которая позволяет оценить степень опасности радиоактивного загрязнения, является указание эквивалентной дозы в Зивертах (Зв), мили Зивертах (мЗв) или микро Зивертах (мкЗв).

Это делается СМИ осознано, потому что, если было бы указано, что радиационный фон в Фукусиме составляет 100 мЗв/час (зарегистрированный факт), это равно 100 000 мкЗв/час, каждый может его сравнить с нормальным радиационным фоном для техногенных источников и понять, что радиационное загрязнение примерно в 1 000 000 раз выше допустимого уровня, который в соответствии с нормативным документом НРБ-99/2009, должен составлять 0,11 мкЗв/час или что соответствует 1000 мкЗв/год или 1 мЗв/год. Это означает, что при нахождении в зоне действия радиации в течении 30 минут, человек получит единовременную дозу радиации, которую он мог получать в течении всей своей жизни. То есть организм подвергся огромному сконцентрированному по времени энергетическому воздействию, что с большой вероятностью может привести к онкологии.

Другие единицы измерения радиации

  • Активность радиоактивного источника — ожидаемое число элементарных радиоактивных распадов в единицу времени. Измеряется:
  • Беккерель (Бк) — единица в системе СИ.
    1 Бк = 1 распад/с
  • Кюри (Ки) — внесистемная единица.
    1 Ки = 3,7*10 10 Бк

Перевод величин радиоактивного распада

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.

Видео: Единицы измерения и дозы радиации

Термины и определения

Радиация или ионизирующее излучение — это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации. Излучение радиации происходит при распаде атомов вещества или при их синтезе.

Радиоактивный распад — это самопроизвольное изменение состава или внутреннего строения нестабильных атомных ядер путем испускания микрочастиц атомов или элементов, составляющих эти частицы (фотон).

Постоянная распада — статистическая вероятность распада атома за единицу времени.

Период полураспада — промежуток времени, в течении которого распадается половина данного количества радионуклида.

Эффективная эквивалентная доза — эквивалентная доза, умноженная на коэффициент, учитывающая разную чувствительность различных тканей живого организма к радиации.

Мощность дозы — это изменение дозы за единицу времени.

Источник

В чем измеряется радиация?

Радиация и радиационное поле – это совокупность негативно заряженных ионов, которые при определенных обстоятельствах заряжаются энергией и могут видоизменять химическую и биологическую структуры, тем самым меняя заряд молекул и провоцируя различного рода изменения. Изменения эти могут быть как негативными, так и позитивными.

Если говорить о влиянии радиации на организм человека и о единицах измерения ионизирующих излучений, то это однозначно негативное явление, которое тем или иным образом сказывается на здоровье человека и может привести к необратимым последствиям и серьезным недугам. Однако радиационное поле сопровождает человека повсеместно и от этого фактора нельзя никак избавиться.


В чем измеряется уровень радиации? Радиоактивными могут являться многие природные породы и источники. Радиация может проникать в атмосферу Земли по причине космических взрывов или катаклизмов, радиация может оказаться повышенной в результате деятельности человека и военных разработок. В чем измеряется радиация? Сила радиационного потока и количество заряженных ионов измеряется традиционно в рентгенах.

Как измерить уровень радиации?

Для того чтобы определить силу радиационного потока и проанализировать ее влияние на живой организм, используются специальные приборы под название дозиметры и единицы дозы ионизирующего излучения рентгены. В чем измеряется доза поглощенной радиации? Такое оборудование считает количество заряженных ионов в определенной области, а затем сравнивает полученные результаты с допустимыми нормами, введенными как изначальное число. Показатели разницы и будут показателями настоящего радиационного фона.

Ионизирующее излучение в чем измеряется? Следует отметить, что максимально допустимыми нормами радиационного потока принято считать показатели не выше 1-3 рентген. Критически высокие дозы ионизированного вещества в воздухе могут навредить человеку, вызвать множество осложнений, заболеваний и воспалений.

Стоит сказать о том, что такую материю, как радиационный фон, дозиметрические величины и единицы их измерений человек не способен увидеть или почувствовать без специального оборудования и оснащения. Поэтому при радиационном влиянии и критическом заражении человек может ощутить опасность только тогда, когда ионизирующие элементы начнут негативно влиять на внутренние органы и системы и спровоцируют заболевания. К сожалению, когда у человека обнаруживают лучевую болезнь (заболевание, связанное с высокой дозой полученной радиации), — спасти или полностью вылечить человека уже практически невозможно.

Интенсивность радиации и ее влияние на человека

Как уже говорилось выше, наличие в воздухе ионизирующих веществ можно проанализировать и точно определить с помощью специального устройства — дозиметра. В каких единицах измеряется радиация? Дозиметр позволяет определять радиационное поле не только в человеческом организме, но и на предметах и продуктах питания.

Важно напомнить, что все радиационные элементы – это частицы с определенной способностью проникать через твердые поверхности. Проникаемость и единицы измерения радиации в таблице зависят напрямую от типа происхождения радиационного поля и от заряженности частиц, из которых она состоит. То есть, альфа-излучения, из которых может состоять ионизирующее вещество, могут практически не вредить человеку и никак не влиять на его самочувствие. Однако бета-лучи крайне быстро проникают внутрь тканей и органов и видоизменяют их биологическую структуру, из-за чего у человека могут диагностировать опухоли, раковые заболевания и отслоения слизистых оболочек.

В чем измеряется радиация в единицах измерения и где используют дозиметры сегодня? Сегодня радиационное поле может проверить и проанализировать любой желающий человек, у которого есть дозиметр. Единицы, в чем измеряется радиация, — это рентгены или зиверты. Однако специальные научные проверки и профилактические измерения радиационного поля проводятся в следующих случаях:

  • Радиация и единицы измерения радиационного фона чаще всего проверяют на территории, которая прилегает к атомным электростанциям, а также на территории, которая может быть потенциально заражена в результате временных или серьезных аварий и неполадок в устройствах на АЭС. К примеру, после катастрофы на атомной электростанции в Чернобыле уровень радиационного поля проверялся не только в зоне отчуждения, но и на многих прилегающих к ней территориях и полях, по причине чего многие соседние села были также эвакуированы из-за заражения местности.
  • В чем измеряется излучение радиации? Радиационное поле стоит проверять перед началом строительства и планированием закладывания фундамента нового здания. По причине того, что многие подземные породы и источники могут выделять радиационные потоки, перед начало крупного строительства стоит убедиться в том, что выбранное место является максимально безопасным для проживания и не будет оказывать негативное влияние на организм.
  • Концентрацию ионизирующих веществ в воздухе в единицах измерения радиации зивертах или рентгенах стоит проверить, если вы планируете маршрут по неизведанным или давно заброшенным маршрутам в незнакомом месте, а также если вы планируете туристический поход в места, которые находятся неподалеку от атомных станций или химических лабораторий.
  • В чем измеряется солнечная радиация? Проверять уровень загрязненности воздуха на предмет радиационных элементов важно также при планировании приобретения частной собственности в незнакомом вам районе. Жилой фонд – это огромная база различной недвижимости, некоторый процент которой может быть представлен по крайне привлекательной цене по причине близости к опасным источникам или нахождения в зоне повышенного радиационного поля. Поэтому любая покупка крупного масштаба должна быть тщательно проверена.

В чем измеряется облучение радиацией? Следует отметить, что если человеческий организм можно частично очистить от радиационных элементов с помощью определенных продуктов питания и медикаментов, то открытую территорию или предметы очистить от ионизирующих веществ невозможно. Поэтому прежде чем покупать новый дом, планировать строительство или приобретать территорию в необследованной местности, убедитесь в том, что это место не является зараженным радиацией или находится на относительно безопасном расстоянии от источника радиации и ее распространителя. Бытовой дозиметр в этом случае будет отличным способом обезопасить свою жизнь и жизнь своих близких.

Нормы радиации для человека

Основной целью измерения концентрации в воздухе ионизирующих частиц является не выявление наличия радиации, но соответствие ее фона нормированным и безопасным для жизни показателям. В чем измеряется доза радиации? Стоит сказать о том, что показатели максимально допустимых и безопасных для человеческого здоровья доз радиации прописаны и стандартизированы в специальной таблице правил и основ радиационного обнаружения. Согласно этой таблице, максимально важными элементами и продуктами, имеющими способность содержать в себе повышенную дозу радиации в единицах измерения рентген, являются:

  1. Пищевые продукты, которые употребляются в пищу человеком.
  2. Вода и жидкости на ее основе.
  3. Воздух и воздушные массы, которые могут транспортировать радиационное излучение на большие территории под воздействием климатических условий.
  4. Строительные материалы и вещества, использующиеся для строительства.
  5. Компьютерная техника и другие электрические приборы и оборудование, которые могут содержать в своем теле ионизирующие вещества.
  6. Медицинские приборы и оснащение.

Следует отметить тот факт, что производители всех выше указанных групп товаров по законодательству обязаны предоставлять соответствующую документацию к продуктам, в которой прописаны нормы радиационных проверок и максимально допустимые показатели ионизирующих веществ в процессе их использования или функционирования. В связи с большим количеством негативных происшествий и катастроф радиационного характера, уровень ионизирующего загрязнения в единицах измерения радиации бэр в таких продуктах, а также на окружающих нас территориях строго контролируется и постоянно проверяется.

Источник

Единицы измерения и дозы радиации

Навигация по статье:

Содержание статьи

В каких единицах измеряется радиация и какие допустимые дозы безопасны для человека. Какой радиационный фон является естественным, а какой допустимым. Как перевести одни единицы измерения радиации в другие.

Допустимые дозы радиации

  • допустимый уровень радиоактивного излучения от естественных источников излучения, иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем

В последующие года, радиационный фон должен быть не выше 0,12 мкЗв/час

предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников, является

Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.

В чем измеряется радиация

Для оценки физических свойств радиоактивных материалов применяются такие величины как:

  • активность радиоактивного источника (Ки или Бк)
  • плотность потока энергии (Вт/м 2 )

Для оценки влияния радиации на вещество (не живые ткани), применяются:

  • поглощенная доза (Грей или Рад)
  • экспозиционная доза (Кл/кг или Рентген)
Читайте также:  Понятие величины положительные скалярные величины процесс измерения величин

Для оценки влияния радиации на живые ткани, применяются:

  • эквивалентная доза (Зв или бэр)
  • эффективная эквивалентная доза (Зв или бэр)
  • мощность эквивалентной дозы (Зв/час)

Оценка действия радиации на не живые объекты

Действие радиации на вещество проявляется в виде энергии, которую вещество получает от радиоактивного излучения, и чем больше вещество поглотит этой энергии, тем сильнее действие радиации на вещество. Количество энергии радиоактивного излучения, воздействующего на вещество, оценивается в дозах, а количество поглощенной веществом энергии называется — поглощенной дозой.

Поглощенная доза — это количество радиации, которое поглощено веществом. В системе СИ для измерения поглощенной дозы используется — Грей (Гр).

1 Грей — это количество энергии радиоактивного излучения в 1 Дж, которая поглощена веществом массой в 1 кг, независимо от вида радиоактивного излучения и его энергии.

1 Грей (Гр) = 1Дж/кг = 100 рад

Данная величина не учитывает степень воздействия (ионизации) на вещество различных видов радиации. Более информативная величина, это экспозиционная доза радиации.

Экспозиционная доза — это величина, характеризующая поглощённую дозу радиации и степень ионизации вещества. В системе СИ для измерения экспозиционной дозы используется — Кулон/кг (Кл/кг).

1 Кл/кг= 3,88*10 3 Р

Используемая внесистемная единица экспозиционной дозы — Рентген (Р):

1 Р = 2,57976*10 -4 Кл/кг

Доза в 1 Рентген — это образование 2,083*10 9 пар ионов на 1см 3 воздуха

Оценка действия радиации на живые организмы

Если живые ткани облучить разными видами радиации, имеющими одинаковую энергию, то последствия для живой ткани будут сильно отличаться в зависимости от вида радиоактивного излучения. Например, последствия от воздействия альфа излучения с энергией в 1 Дж на 1 кг вещества будут сильно отличаться от последствий воздействия энергии в 1 Дж на 1 кг вещества, но только гамма излучения. То есть при одинаковой поглощенной дозе радиации, но только от разных видов радиоактивного излучения, последствия будут разными. То есть для оценки влияния радиации на живой организм недостаточно просто понятия поглощенной или экспозиционной дозы радиации. Поэтому для живых тканей было введено понятие эквивалентной дозы.

Эквивалентная доза — это поглощённая живой тканью доза радиации, умноженная на коэффициент k, учитывающий степень опасности различных видов радиации. В системе СИ для измерения эквивалентной дозы используется — Зиверт (Зв).

Используемая внесистемная единица эквивалентной дозы — Бэр (бэр): 1 Зв = 100 бэр.

Коэффициент k
Вид излучения и диапазон энергий Весовой множитель
Фотоны всех энергий (гамма излучение) 1
Электроны и мюоны всех энергий (бета излучение) 1
Нейтроны с энергией 20 МэВ (нейтронное излучение) 5
Протоны с энергий > 2 МэВ (кроме протонов отдачи) 5
Альфа-частицы, осколки деления и другие тяжелые ядра (альфа излучение) 20

Чем выше «коэффициент k» тем опаснее действие определенного вида радиции для тканей живого организма.

Для более лучшего понимания, можно немного по-другому дать определение «эквивалентной дозы радиации»:

Эквивалентная доза радиации — это количество энергии поглощённое живой тканью (поглощенная доза в Грей, рад или Дж/кг) от радиоактивного излучения с учетом степени воздействия (наносимого вреда) этой энергии на живые ткани (коэффициент К).

Допустимые нормы радиации

В России, с момента аварии в Чернобыле, наибольшее распространение имела внесистемная единица измерения мкР/час, отражающая экспозиционная дозу, которая характеризует меру ионизации вещества и поглощенную им дозу. Данная величина не учитывает различия в воздействии разных видов радиации (альфа, бета, нейтронного, гама, рентгеновского) на живой организм.

Наиболее объективная характеристика это — эквивалентная доза радиации, измеряемая в Зивертах. Для оценки биологического действия радиации в основном применяется мощность эквивалентной дозы радиации, измеряемая в Зивертах в час. То есть это оценка воздействия радиации на организм человека за единицу времени, в данном случае за час. Учитывая, что 1 Зиверт это значительная доза радиации, для удобства применяют кратную ей величину, указываемую в микро Зивертах — мкЗв/час:

1 Зв/час = 1000 мЗв/час = 1 000 000 мкЗв/час.

Могут применяться величины, характеризующие воздействия радиации за более длительный период, например, за 1 год.

К примеру, в нормах радиационной безопасности НРБ-99/2009 (пункты 3.1.2, 5.2.1, 5.4.4), указана норма допустимого воздействия радиации для населения от техногенных источников 1 мЗв/год.

В нормативных документах СП 2.6.1.2612-10 (пункт 5.1.2) и СанПиН 2.6.1.2800-10 (пункт 4.1.3) указаны приемлемые нормы для естественных источников радиоактивного излучения, величиной 5 мЗв/год. Используемая формулировка в документах — «приемлемый уровень», очень удачная, потому что он не допустимый (то есть безопасный), а именно приемлемый.

Но в нормативных документах есть противоречия по допустимому уровню радиации от природных источников. Если просуммировать все допустимые нормы, указанные в нормативных документах (МУ 2.6.1.1088-02, СанПиН 2.6.1.2800-10, СанПиН 2.6.1.2523-09), по каждому отдельному природному источнику излучения, то получим, что радиационный фон от всех природных источников радиации (включая редчайший газ радон) не должен составлять более 2,346 мЗв/год или 0,268 мкЗв/час. Это подробно рассмотрено в статье «Источники радиоактивных излучений». Однако в нормативных документах СП 2.6.1.2612-10 и СанПиН 2.6.1.2800-10 указана приемлемая норма для природных источников радиации в 5 мЗв/год или 0,57 мкЗ/час.

Как видите, разница в 2 раза. То есть к допустимому нормативному значению 0,268 мкЗв/час, без всяких обоснований применен повышающий коэффициент 2. Это скорее всего связано с тем, что нас в современном мире стали массово окружать материалы (прежде всего строительные материалы) содержащие радиоактивные элементы.

Обратите внимание, что в соответствии с нормативными документами, допустимый уровень радиации от естественных источников излучения 5 мЗв/год, а от искусственных (техногенных) источников радиоактивного излучения всего 1 мЗв/год.

Получается, что при уровне радиоактивного излучения от искусственных источников свыше 1 мЗв/год могут наступить негативные воздействия на человека, то есть привести к заболеваниям. Одновременно нормы допускают, что человек может жить без вреда для здоровья в районах, где уровень выше безопасного техногенного воздействия радиации в 5 раз, что соответствует допустимому уровню радиоактивного естественного фона в 5мЗв/год.

По механизму своего воздействия, видам излучения радиации и степени ее действия на живой организм, естественные и техногенные источники радиации не отличаются.

Все же, о чем говорят эти нормы? Давайте рассмотрим:

  • норма в 5 мЗв/год, указывает, что человек в течении года может максимально получить суммарную дозу радиации, поглощённую его телом в 5 мили Зиверт. В эту дозу не входят все источники техногенного воздействия, такие как медицинские, от загрязнения окружающей среды радиоактивными отходами, утечки радиации на АЭС и т.д.
  • для оценки, какая доза радиации допустима в виде фонового излучения в данный момент, посчитаем: общую годовую норму в 5000 мкЗв (5 мЗв) делим на 365 дней в году, делим на 24 часа в сутки, получим 5000/365/24 = 0,57 мкЗв/час
  • полученное значение 0,57 мкЗв/час, это предельно допустимое фоновое излучение от природных источников, которое считается приемлемым.
  • в среднем радиоактивный фон (он давно уже не естественный) колеблется в пределах 0,11 — 0,16 мкЗв/час. Это нормальный фон радиации.

Можно подвести итог по допустимым уровням радиации, действующим на сегодняшний день:

  • По нормативной документации, предельно допустимый уровень радиации (радиационный фон) от природных источников излучения может составлять 0,57 мкЗ/час.
  • Если не учитывать не обоснованный повышающий коэффициент, а также не учитывать действие редчайшего газа — радона, то получим, что в соответствии с нормативной документацией, нормальный радиационный фон от природных источников радиации не должен превышать 0,07 мкЗв/час
  • предельно допустимой нормативной суммарной дозой, полученной от всех техногенных источников, является 1 мЗв/год.

Можно с уверенность утверждать, что нормальный, безопасный радиационный фон в пределах 0,07 мкЗв/час, действовал на нашей планете до начала промышленного применения человеком радиоактивных материалов, атомной энергетики и атомного оружия (ядерные испытания).

А в результате деятельности человека, мы теперь считаем приемлемым радиационный фон в 8 раз превышающий естественное значение.

Стоит задуматься, что до начала активного освоения человеком атома, человечество не знало, что такое раковые заболевания в таком массовом количестве, как это происходит в современном мире. Если до 1945 года в мире регистрировались раковые заболевания, то их можно было считать единичными случаями по сравнению со статистикой после 1945 года.

Задумайтесь, по данным ВОЗ (всемирной организации здравоохранения), только в 2014 году на нашей планете умерли около 10 000 000 человек от раковых заболеваний, это почти 25% от общего количества умерших, то есть фактически каждый четвертый умерший на нашей планете, это человек умерший от ракового заболевания.

Так же по данным ВОЗ, ожидается, что в ближайшие 20 лет, число новых случаев заболевания раком будет увеличено примерно на 70% по сравнению с сегодняшним днем. То есть рак станет основной причиной смертности. И как бы тщательно, правительство государств с атомной энергетикой и атомным оружием, не маскировали бы общую статистику по причинам смертности от раковых заболеваний. Можно уверенно утверждать, что основной причиной раковых заболеваний, является воздействие на организм человека радиоактивных элементов и излучений.

Для перевода мкР/час в мкЗв/час можно воспользоваться упрощенной формулой перевода:

1 мкР/час = 0,01 мкЗв/час

1 мкЗв/час = 100 мкР/час

0,10 мкЗв/час = 10 мкР/час

Указанные формулы перевода — это допущения, так как мкР/час и мкЗв/час характеризуют разные величины, в первом случае это степень ионизации вещества, во втором это поглощённая доза живой тканью. Данный перевод не корректен, но он позволяет хотя бы приблизительно оценить риск.

Перевод величин радиации

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.

Единицы измерения, применяемые в СМИ

Часто, при публичном объявлении информации о радиационном загрязнении, официальными структурами осознано применяются величины, которые не позволяет объективно оценить степень угрозы. Например, при освещении аварии АЭС Фукусима-1 в Японии, приводятся данные по плотности загрязнения почвы или воды радиоизотопами в Беккерелях на единицу объема, или указывается активность радиоизотопов в Кюри. Данные величины характеризуют лишь сам радиоактивный изотоп, указывая на количество распадов ядер элемента за единицу времени и не дают представления о его потенциальном воздействии на вещество или живые организмы.

Более объективной величиной, которая позволяет оценить степень опасности радиоактивного загрязнения, является указание эквивалентной дозы в Зивертах (Зв), мили Зивертах (мЗв) или микро Зивертах (мкЗв).

Это делается СМИ осознано, потому что, если было бы указано, что радиационный фон в Фукусиме составляет 100 мЗв/час (зарегистрированный факт), это равно 100 000 мкЗв/час, каждый может его сравнить с нормальным радиационным фоном для техногенных источников и понять, что радиационное загрязнение примерно в 1 000 000 раз выше допустимого уровня, который в соответствии с нормативным документом НРБ-99/2009, должен составлять 0,11 мкЗв/час или что соответствует 1000 мкЗв/год или 1 мЗв/год. Это означает, что при нахождении в зоне действия радиации в течении 30 минут, человек получит единовременную дозу радиации, которую он мог получать в течении всей своей жизни. То есть организм подвергся огромному сконцентрированному по времени энергетическому воздействию, что с большой вероятностью может привести к онкологии.

Читайте также:  Как измерить фигуру песочные часы

Другие единицы измерения радиации

  • Активность радиоактивного источника — ожидаемое число элементарных радиоактивных распадов в единицу времени. Измеряется:
  • Беккерель (Бк) — единица в системе СИ.
    1 Бк = 1 распад/с
  • Кюри (Ки) — внесистемная единица.
    1 Ки = 3,7*10 10 Бк

Перевод величин радиоактивного распада

Для перевода величин, введите в поле нужное значение и выберете исходную единицу измерения. После ввода значения, остальные величины в таблице будут вычислены автоматически.

Видео: Единицы измерения и дозы радиации

Термины и определения

Радиация или ионизирующее излучение — это процесс излучения веществом заряженных элементарных частиц, в виде электронов, протонов, нейтронов, атомов гелия или фотонов и мюонов. От того, какой элемент излучается, зависит вид радиации. Излучение радиации происходит при распаде атомов вещества или при их синтезе.

Радиоактивный распад — это самопроизвольное изменение состава или внутреннего строения нестабильных атомных ядер путем испускания микрочастиц атомов или элементов, составляющих эти частицы (фотон).

Постоянная распада — статистическая вероятность распада атома за единицу времени.

Период полураспада — промежуток времени, в течении которого распадается половина данного количества радионуклида.

Эффективная эквивалентная доза — эквивалентная доза, умноженная на коэффициент, учитывающая разную чувствительность различных тканей живого организма к радиации.

Мощность дозы — это изменение дозы за единицу времени.

Источник

Единицы измерения радиации таблица единицы измерения радиации

5. Дозы излучения и единицы измерения

Действие ионизирующих излучений представляет собой сложный процесс. Эффект облучения зависит от величины поглощенной дозы, ее мощности, вида излучения, объема облучения тканей и органов. Для его количественной оценки введены специальные единицы, которые делятся на внесистемные и единицы в системе СИ. Сейчас используются преимущественно единицы системы СИ. Ниже в таблице 10 дан перечень единиц измерения радиологических величин и проведено сравнение единиц системы СИ и внесистемных единиц.

Основные радиологические величины и единицы Величина Наименование и обозначение
единицы измерения Соотношения между
единицами Внесистемные Си Активность нуклида, А Кюри (Ки, Ci) Беккерель (Бк, Bq) 1 Ки = 3.7·10 10 Бк
1 Бк = 1 расп/с
1 Бк=2.7·10 -11 Ки Экспозицион-
ная доза, X Рентген (Р, R) Кулон/кг
(Кл/кг, C/kg) 1 Р=2.58·10 -4 Кл/кг
1 Кл/кг=3.88·10 3 Р Поглощенная доза, D Рад (рад, rad) Грей (Гр, Gy) 1 рад-10 -2 Гр
1 Гр=1 Дж/кг Эквивалентная доза, Н Бэр (бэр, rem) Зиверт (Зв, Sv) 1 бэр=10 -2 Зв
1 Зв=100 бэр Интегральная доза излучения Рад-грамм (рад·г, rad·g) Грей- кг (Гр·кг, Gy·kg) 1 рад·г=10 -5 Гр·кг
1 Гр·кг=105 рад·г

Для описания влияния ионизирующих излучений на вещество используются следующие понятия и единицы измерения :
Активность радионуклида в источнике (А). Активность равна отношению числа самопроизвольных ядерных превращений в этом источнике за малый интервал времени (dN) к величине этого интервала (dt) :

Единица активности в системе СИ — Беккерель (Бк).
Внесистемная единица — Кюри (Ки).

Число радиоактивных ядер N(t) данного изотопа уменьшается со временем по закону:

где N — число радиоактивных ядер в момент времени t = 0, Т1/2 -период полураспада — время, в течение которого распадается половина радиоактивных ядер.
Массу m радионуклида активностью А можно рассчитать по формуле :

m = 2.4·10 -24 × M ×T1/2 × A,

где М — массовое число радионуклида, А — активность в Беккерелях, T1/2 — период полураспада в секундах. Масса получается в граммах.
Экспозиционная доза (X). В качестве количественной меры рентгеновского и -излучения принято использовать во внесистемных единицах экспозиционную дозу, определяемую зарядом вторичных частиц (dQ), образующихся в массе вещества (dm) при полном торможении всех заряженных частиц :

Единица экспозиционной дозы — Рентген (Р). Рентген — это экспозиционная доза рентгеновского и
-излучения, создающая в 1куб.см воздуха при температуре О°С и давлении 760 мм рт.ст. суммарный заряд ионов одного знака в одну электростатическую единицу количества электричества. Экспозиционной дозе 1 Р
соответствует 2.08·10 9 пар ионов (2.08·10 9 = 1/(4.8·10 -10 )). Если принять среднюю энергию образования 1 пары ионов в воздухе равной 33.85 эВ, то при экспозиционной дозе 1 Р одному кубическому сантиметру воздуха передается энергия, равная :
(2.08·10 9 )·33.85·(1.6·10 -12 ) = 0.113 эрг,
а одному грамму воздуха :

Поглощение энергии ионизирующего излучения является первичным процессом, дающим начало последовательности физико-химических преобразований в облученной ткани, приводящей к наблюдаемому радиационному эффекту. Поэтому естественно сопоставить наблюдаемый эффект с количеством поглощенной энергии или поглощенной дозы.
Поглощенная доза (D) — основная дозиметрическая величина. Она равна отношению средней энергии dE, переданной ионизирующим излучением веществу в элементарном объеме, к массе dm вещества в этом объеме :

Единица поглощенной дозы — Грей (Гр). Внесистемная единица Рад определялась как поглощенная доза любого ионизирующего излучения, равная 100 эрг на 1 грамм облученного вещества.
Эквивалентная доза (Н). Для оценки возможного ущерба здоровью человека в условиях хронического облучения в области радиационной безопасности введено понятие эквивалентной дозы Н, равной произведению поглощенной дозы Dr, созданной облучением — r и усредненной по анализируемому органу или по всему организму, на весовой множитель wr (называемый еще — коэффициент качества излучения)
(таблица 11).

Единицей измерения эквивалентной дозы является Джоуль на килограмм. Она имеет специальное наименование Зиверт (Зв).

Весовые множители излучения

Вид излучения и диапазон энергий

Весовой множитель Фотоны всех энергий

1 Электроны и мюоны всех энергий

1 Нейтроны с энергией 20 МэВ

5 Протоны с энергий > 2 МэВ (кроме протонов отдачи)

5 альфа-частицы, осколки деления и другие тяжелые ядра

Влияние облучения носит неравномерный характер. Для оценки ущерба здоровью человека за счет различного характера влияния облучения на разные органы (в условиях равномерного облучения всего тела) введено понятие эффективной эквивалентной дозы Еэфф применяемое при оценке возможных стохастических эффектов — злокачественных новообразований.
Эффективная доза равна сумме взвешенных эквивалентных доз во всех органах и тканях:

где wt — тканевый весовой множитель (таблица 12), а Ht -эквивалентная доза, поглощенная в
ткани — t. Единица эффективной эквивалентной дозы — Зиверт.

Значения тканевых весовых множителей wt для различных органов и тканей. Ткань или орган wt Ткань или орган wt Половые железы 0.20 Печень 0.05 Красный костный мозг 0.12 Пищевод 0.05 Толстый кишечник 0.12 Щитовидная железа 0.05 Легкие 0.12 Кожа 0.01 Желудок 0.12 Поверхность костей 0.01 Мочевой пузырь 0.05 Остальные органы 0.05 Молочные железы 0.05

где N(E) — число лиц, получивших индивидуальную эффективную эквивалентную дозу Е. Единицей S является человеко-Зиверт
(чел-Зв).
Радионуклиды — радиоактивные атомы с данным массовым числом и атомным номером, а для изомерных атомов — и с данным определенным энергетическим состоянием атомного ядра. Радионуклиды
(и нерадиоактивные нуклиды) элемента иначе называют его изотопами.
Помимо названных выше величин для сравнения степени радиационного повреждения вещества при воздействии на него различных ионизирующих частиц с разной энергией используется также величина линейной передачи энергии (ЛПЭ), определяемая соотношением :

где — средняя энергия, локально переданная среде ионизирующей частицей вследствие столкновений на элементарном пути dl.
Пороговая энергия обычно относится к энергии электрона. Если в акте столкновения первичная заряженная частица образует -электрон с энергией больше , то эта энергия не включается в значение dE, и -электроны с энергией больше рассматриваются как самостоятельные первичные частицы.
Выбор пороговой энергии является произвольным и зависит от конкретных условий.
Из определения следует, что линейная передача энергии является некоторым аналогом тормозной способности вещества. Однако между этими величинами есть различие. Заключается оно в следующем:
1. ЛПЭ не включает энергию, преобразованную в фотоны, т.е. радиационные потери.
2. При заданном пороге ЛПЭ не включает в себя кинетическую энергию частиц, превышающую .
Величины ЛПЭ и тормозной способности совпадают, если можно пренебречь потерями на тормозное излучение и

Средние значения величины линейной передачи энергии L и
пробега R для электронов, протонов и альфа-частиц в мягкой ткани.
Частица Е, МэВ L, кэВ/мкм R, мкм
Электрон 0.01 2.3 1
0.1 0.42 180
1.0 0.25 5000
Протон 0.1 90 3
2.0 16 80
5.0 8 350
100.0 4 1400
α -частица 0.1 260 1
5.0 95 35

По величине линейной передачи энергии можно определить весовой множитель данного вида излучения (таблица 14)

Зависимость весового множителя излучения wr от линейной
передачи энергии ионизирующего излучения L для воды.
L, кэВ/мкм 175
wr 1 2 5 10 20

Предельно допустимые дозы облучения

По отношению к облучению население делится на 3 категории.
Категория А облучаемых лиц или персонал (профессиональные работники) — лица, которые постоянно или временно работают непосредственно с источниками ионизирующих излучений.
Категория Б облучаемых лиц или ограниченная часть населения — лица, которые не работают непосредственно с источниками ионизирующего излучения, но по условиям проживания или размещения рабочих мест могут подвергаться воздействию ионизирующих излучений.
Категория В облучаемых лиц или население — население страны, республики, края или области.
Для категории А вводятся предельно допустимые дозы -наибольшие значения индивидуальной эквивалентной дозы за календарный год, при которой равномерное облучение в течение 50 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами. Для категории Б определяется предел дозы.
Устанавливается три группы критических органов:
1 группа — все тело, гонады и красный костный мозг.
2 группа — мышцы, щитовидная железа, жировая ткань, печень, почки, селезенка, желудочно-кишечный тракт, легкие, хрусталики глаз и другие органы, за исключением тех, которые относятся к 1 и 3 группам.
3 группа — кожный покров, костная ткань, кисти, предплечья, голени и стопы.
Дозовые пределы облучения для разных категорий лиц даны в таблице 15.

Дозовые пределы внешнего и внутреннего облучения (бэр/год).

Категории лиц Группы критических органов 1 2 3 Категория А, предельно допустимая доза (ПДД) 5 15 30 Категория Б, предел дозы(ПД) 0.5 1.5 3

Помимо основных дозовых пределов для оценки влияния излучения используют производные нормативы и контрольные уровни. Нормативы рассчитаны с учетом непревышения дозовых пределов ПДД (предельно допустимая доза) и ПД (предел дозы). Расчет допустимого содержания радионуклида в организме проводят с учетом его радиотоксичности и непревышения ПДД в критическом органе. Контрольные уровни должны обеспечивать такие низкие уровни облучения, какие можно достичь при соблюдении основных дозовых пределов.
Для категории А (персонала) установлены:
— предельно допустимое годовое поступление ПДП радионуклида через органы дыхания;
— допустимое содержание радионуклида в критическом органе ДСА;
— допустимая мощность дозы излучения ДМДА;
— допустимая плотность потока частиц ДППА;
— допустимая объемная активность (концентрация) радионуклида в воздухе рабочей зоны ДКА;
— допустимое загрязнение кожных покровов, спецодежды и рабочих поверхностей ДЗА .
Для категории Б (ограниченной части населения) установлены:
— предел годового поступления ПГП радионуклида через органы дыхания или пищеварения;
— допустимая объемная активность (концентрация) радионуклида ДКБ в атмосферном воздухе и воде;
— допустимая мощность дозы ДМДБ;
— допустимая плотность потока частиц ДППБ;
— допустимое загрязнение кожных покровов, одежды и поверхностей ДЗБ .
Численные значения допустимых уровней в полном объеме содержатся в
«Нормах радиационной безопасности».

Источник